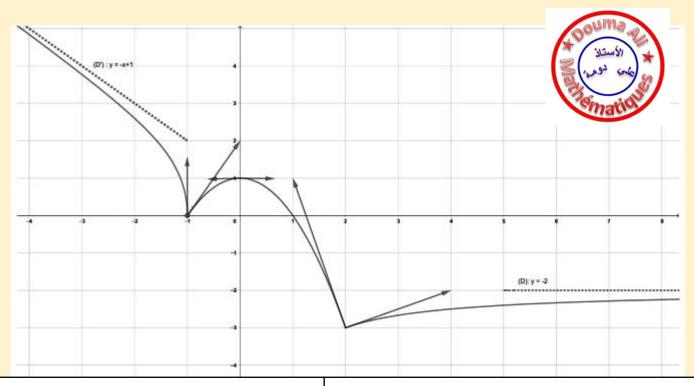
Douma Ali

Série d'exercices

3^{ème} Sciences

Exercice N°1:

La courbe (C) ci-dessous est la représentation graphique dans un repère orthonormé $(0,\vec{t},\vec{j})$ d'une fonction f définie , continue sur $\mathbb R$ et dérivable sur $\mathbb R\setminus\{-1,2\}$, tel que (C) admet une asymptote horizontale (D)au voisinage de $(+\infty)$ d'équation y=-2 et une asymptote oblique (D')au voisinage de $(-\infty)$ d'équation y=-x+1. On note f' la fonction dérivée de f.



- 1) Par lecture graphique donner:
 - a) $\lim_{x\to+\infty} f(x)$; $\lim_{x\to-\infty} f(x)$

$$\lim_{x\to 0}\frac{f(x)-1}{x}$$

- $b)\lim_{x\to-\infty}\frac{f(x)}{x}$; $\lim_{x\to-\infty}(f(x)+x)$
- c) $\lim_{x \to (-1)^-} \frac{f(x)}{x+1}$; $\lim_{x \to (-1)^+} \frac{f(x)}{x+1}$
- $d)\lim_{x\to 2^{-}}\frac{f(x)+3}{x-2};\lim_{x\to 2^{+}}\frac{f(x)+3}{x-2}$

- 2) Soit g la fonction définie par : $g(x) = \sqrt{f(x)}$
- a) Déterminer le domaine de définition de $oldsymbol{g}$.
- b)Donner g'(x) en fonction de f'(x) et f(x)
- puis dresser le tableau de variation de g.
- 3) Soit h la fonction définie par $h(x) = \frac{1}{f(x)}$
- a) Déterminer le domaine de définition de h .
- b) Donner h'(x) en fonction de f'(x) et f(x)puis dresser le tableau de variation de h.

Exercice N°2: Le tableau suivant est le tableau de variation d'une fonction

- 1) a) Déterminer le domaine de définition def.
 - b) Donner les limites suivantes: $\lim_{x\to +\infty} f(x)$; $\lim_{x\to -\infty} f(x)$; $\lim_{x\to (-1)^-} f(x)$; $\lim_{x\to (-1)^+} f(x)$
- c) Donner les équations des asymptotes à la courbe (C_f) de f.
- 2) Discuter suivant les valeurs de $(m \in \mathbb{R})$,

le nombre des solutions de l'équation : f(x) = m.

- 3) On pose : $f(x) = \frac{ax^2 + b}{x^2 1}$ (ou a et b sont deux réels).
- a) Calculer en fonction de a et b: f(0) et $\lim_{x\to +\infty} f(x)$.
 - b) Déduire alors les deux réels a et b
- 4) Tracer dans l'annexe , la courbe (C_f) de f.

Exercice N°3:

Soit la fonction g définie sur $R \setminus \{-1\}$ par : $g(x) = \frac{x^2+1}{x+1}$,

et (φ_g) sa courbe représentative dans un ROND $(0, \vec{\imath}, \vec{\jmath})$

- 1) déterminer les limites de g aux bornes de son domaine de définition .
- 2) Etudier le sens de variation de g.
- 3) Montrer que pour tout $x \neq -1$; $g(x) = x 1 + \frac{2}{x+1}$.
- 4) a) Démontrer que (D): y = x 1 est une asymptote oblique à (φ_g) au $V(\pm \infty)$.
 - b) Etudier la position relative de (D) et (φ_g).

La courbe (φ_g) admet – elle une autre asymptote ?

- 5) Montrer que le point I(-1,-2) est un centre de symétrie de (φ_q) .
- 6) Ecrire l'équation de la tangente (T) à (φ_g) au point d'abscisse 0 .
- 7) Tracer dans l'annexe, la droite (T) et la courbe (φ_g) .

Exercice N°4:

Soit $x \in \mathbb{R}$, on pose $h(x) = 1 - \cos(2x) + \sin(2x)$

1) Calculer $h\left(\frac{\pi}{4}\right)$ et $h\left(\frac{\pi}{8}\right)$

- 2) Pour tout x de $\left]0,\frac{\pi}{2}\right[$ on pose $H(x)=\frac{h(x)}{1+\sin(2x)}$.
 - a) Vérifier que $H\left(\frac{\pi}{8}\right) = 2 \sqrt{2}$
 - b) Montrer que : h(x) = 2sinx(sinx + cosx)
 - c) Vérifier que $1 + sin2x = (sinx + cosx)^2$

puis déduire que : $H(x) = \frac{2sinx}{sinx+cosx}$

- 3) a) Montrer que : $\sqrt{2}\cos\left(x-\frac{\pi}{4}\right) = \sin x + \cos x$
 - b) Déduire que $tan\left(\frac{\pi}{8}\right) = \sqrt{2} 1$
 - c) Déduire alors $cos\left(\frac{\pi}{8}\right)$.

exercice N°5

Le plan orienté est rapporté à un repère orthonormé direct (0, I, J)

- I) montrer que: $sin\left(x+\frac{\pi}{2}\right)+cos(3\pi-x)+cos\left(\frac{13\pi}{2}+x\right)-sin(x-\pi)=0$
- II) Soit la fonction f définie par $f(x) = 2\cos\left(x + \frac{\pi}{4}\right) + \sin^2 x \sqrt{2}\cos x$.
- 1) calculer: f(0); $f(7\pi)$; $f(\frac{\pi}{2})$ et $f(\frac{3\pi}{4})$.
- 2) Montrer que : $2\cos\left(\frac{7\pi}{12}\right) = f\left(\frac{\pi}{3}\right) + \frac{\sqrt{8}-3}{4}$.

- 3) a) montrer que pour tout réel , $x \in R$ on a $f(x) = sin^2 x \sqrt{2} sin x$.
- b) calculer : $f\left(\frac{\pi}{3}\right)$ et en déduire une valeur exacte de $\cos\left(\frac{7\pi}{12}\right)$.
- c) Résoudre \mathbb{R} puis dans $[0,2\pi]$ dans l'équation : f(x)=0.

exercice N°6

- 1) Soit la fonction f définie sur \mathbb{R} par $f(x) = -sin^2x + sinx + 3$
- a) calculer $f\left(-\frac{25\pi}{4}\right)$; $f\left(\frac{1993\pi}{6}\right)$ et $f\left(-\frac{74\pi}{6}\right)$
- b) montrer que pour tout réel $x \in R$ on a $f(x) \ge 0$
- 2) Montrer que a) $sin x = sin \left(\frac{\pi}{3} + x\right) sin \left(\frac{\pi}{3} x\right)$.
 - b) $sinx cosx = \sqrt{2} sin\left(x \frac{\pi}{4}\right)$.
 - c) $(sin2x + cos2x)^2 1 = sin4x$.

3) calculer les réels Aet B:

$$A = \cos^2\left(\frac{\pi}{8}\right) + \cos^2\left(\frac{3\pi}{8}\right) + \cos^2\left(\frac{5\pi}{8}\right) + \cos^2\left(\frac{7\pi}{8}\right).$$

$$B=\sin^2\left(\frac{\pi}{12}\right)+\sin^2\left(\frac{3\pi}{12}\right)+\sin^2\left(\frac{5\pi}{12}\right)+\sin^2\left(\frac{7\pi}{12}\right)+\sin^2\left(\frac{9\pi}{12}\right)+\sin^2\left(\frac{11\pi}{12}\right)$$

exercice N°7

On considère la fonction $g(x) = 4 \cos^2 x + \sqrt{3} \cos x \sin x + 3 \sin^2 x - 4$.

- 1) a)montrer que pour tout réel $x \in R$ on a : $g(x) = \sqrt{3} \sin x \cos x \sin^2 x$
 - b) montrer que pour tout réel $x \in R$ on $a : g(x) = 2 \sin x \cos \left(x + \frac{\pi}{6}\right)$.
- 2) Résoudre dans R l'équation Dévoirat

Exercice N°8:

Soit la fonction f défini par : $f(x) = \frac{\sqrt{x+7}-3}{x^2-2x}$

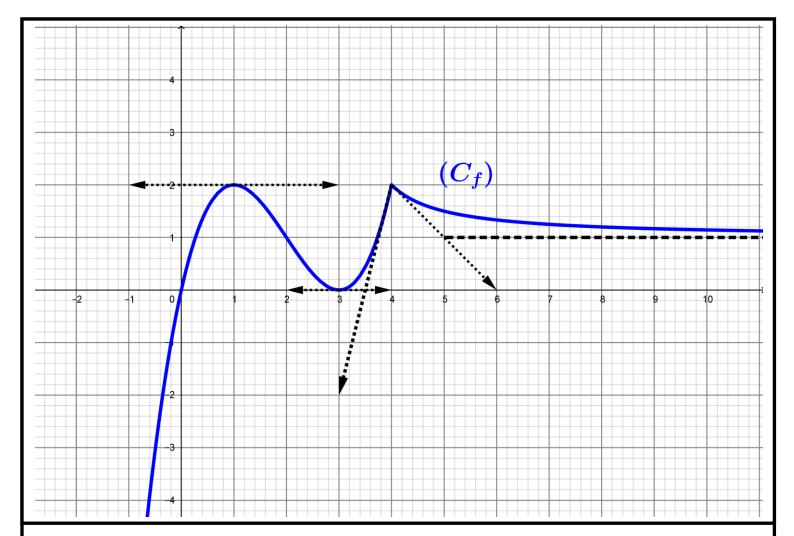
- 1) Déterminer D_f .
- 2) Vérifier que quel que soit $x \in D_f$; $f(x) = \frac{1}{x(\sqrt{x+7}+3)}$.
- 3) a) Calculer : $\lim_{x\to 2} f(x)$ et : $\lim_{x\to 0^-} f(x)$
- b) La fonction fest elle prolongeable par continuité en 2 ? si, oui donner ce prolongement.
- 4) Soit g la fonction définie sur $\mathbb R$ par :

$$g(x) = \begin{cases} \frac{-1}{f(x)} & si \ x > 2\\ \frac{x^3 + x^2 - 4x - 4}{x^2 - 5x + 6} & si \ x < 2\\ g(2) = -12 \end{cases}$$

- a) Développer : $(x + 1)(x^2 4)$.
- b) Calculer : $\lim_{x\to 2^-} g(x)$ et : $\lim_{x\to 2^+} g(x)$.
- c) Montrer que g est continue en 2.
- d) Montrer que g est continue sur \mathbb{R} .

Exercice N°9:

La courbe (C)ci – dessous est la représentations graphique dans un repère orthonormé $(0, \vec{i}, \vec{j})$ d'une fonction f définie sur \mathbb{R} ;



1) Répondre, à chaque fois par, Vrai ou faux :

- a) La fonction f est continue sur $\mathbb R$.
- b) La fonction f est dérivable sur $\mathbb R$.
- 2) Dresser le tableau de variation de f.

- a) Déterminer le domaine de définition de f'.
- b) Dresser le tableau de signe de f'.

4) Déterminer par lecture graphique :

a)
$$f(0)$$
, $f(1)$, $f(3)$, $f(4)$.

b)
$$f^{\prime}(1)$$
 , $f^{\prime}(3)$, $f^{\prime}_{d}(4)$, $f^{\prime}_{g}(4)$.

- c) $\lim_{x\to+\infty}f(x)$.
- 5) On pose g la fonction définie sur \mathbb{R} par : $g(x) = (f(x))^2$.
 - a) Calculer g'(x) en fonction de f(x) et f'(x)

et dresser la tableau de variation g

