Exercie1:

1/ Résoudre dans \mathbb{C} , l'équation (E): $z^2 - i\sqrt{3}z - 1 = 0$.

(On donnera les solutions sous forme exponentielle).

- 2/ Pour tout $z \in \mathbb{C}$, on pose $P(z) = 3z^4 7i\sqrt{3}z^3 18z^2 + 7i\sqrt{3}z + 3$.
 - a) Vérifier que $P(i\sqrt{3}) = 0$ et que $P(e^{i\frac{\pi}{3}}) = 0$.
 - b) Montrer que pour tout nombre complexe non nul z. $P\left(\frac{-1}{z}\right) = \frac{1}{z^4} \cdot P(z)$.
 - c) En déduire que les nombres $\frac{\sqrt{3}}{3}i$ et $e^{i(\frac{2\pi}{3})}$ sont deux solutions de l'équation P(z) = 0.
- 3/ Le plan est muni d'un repère orthonormé direct (O, \vec{u}, \vec{v}) .

On désigne par A , B et C les points d'affixes respectives $e^{i\frac{\pi}{3}}$, $3e^{i\frac{\pi}{3}}$ et $e^{i(\frac{2\pi}{3})}$

- a) Construire les points A,B et C.
- b) Construire le point D défini par $\overrightarrow{OD} = \overrightarrow{OA} + \overrightarrow{OC}$ et donner son affixe sous la forme cartésienne.
- c) La parallèle à la droite (BD) passant par A coupe la droite (OD) au point E. Déterminer l'affixe du point E.

Exercie2:

Dans la figure 1 de l'annexe ci-jointe, (O, \vec{u}, \vec{v}) est un repère orthonormé direct du plan,

- (C) est le cercle de centre O et de rayon 3.
 2) Soit Q le point d'affixe √5 + 2i.
 - a) Montrer que le point Q appartient à (C).
 - b) Construire alors le point Q.
- 3) Soient A et B les points d'affixes respectives les nombres complexes a et b.
 - a) Montrer que les points A et B appartiennent au cercle (C).
 - b) Vérifier que $\overrightarrow{OA} + \overrightarrow{OB} = \overrightarrow{OQ}$.
 - c) En déduire que le quadrilatère OAQB est un losange.
 - d) Construire alors les points A et B.

- 1) On considère dans \mathbb{C} l'équation (E): $z^2 (\sqrt{5} + 2i)z + 1 + 4\sqrt{5}i = 0$.
 - a) Calculer $\left(\sqrt{5} + 2i\right)^2$.
 - b) Vérifier que le discriminant de l'équation (E) est $\Delta = -3(\sqrt{5} + 2i)^2$.
 - c) En déduire que les solutions de (E) sont :

$$a = \left(\sqrt{5} + 2i\right)\left(\frac{1+i\sqrt{3}}{2}\right)$$
 et $b = \left(\sqrt{5} + 2i\right)\left(\frac{1-i\sqrt{3}}{2}\right)$.

Exercie3:

Le plan est rapporté à un repère orthonormé direct $(0, \vec{u}, \vec{v})$.

On considère les points A et B d'affixes respectives $a = 2e^{i\frac{\pi}{6}}$ et $b = 2e^{i\frac{\pi}{4}}$.

- 1) a) Construire, dans le repère (O, u, v), les points A et B.
 - b) Ecrire a et b sous forme algébrique.
- 2) La droite parallèle à l'axe des ordonnées passant par A et la droite parallèle à l'axe des abscisses passant par B se coupent en un point C.
 - a) Déterminer l'affixe c du point C.
 - b) Vérifier que $c^2 = 1 + 2i\sqrt{6}$.
- 3) On considère le point D d'affixe c².
 - a) Montrer que OD = 5.
 - b) En déduire une construction du point D.
- 4) Résoudre dans \mathbb{C} , l'équation $2z^2-2z-i\sqrt{6}=0$. On désigne par z_1 la solution dont la partie réelle et la partie imaginaire sont positives et par z_2 l'autre solution.
- 5) Soit les points I, M_1 et M_2 d'affixes respectives I, z_1 et z_2 .
 - a) Justifier que le point M₁ est le milieu du segment [IC].
 - b) Montrer que le quadrilatère OCM₁M₂ est un parallélogramme.
 - c) Construire les points M_1 et M_2 .

Exercie4:

Dans l'annexe ci-jointe (Figure 1), (O, u, v) est un repère orthonormé direct du plan et (C) est le cercle de centre O et de rayon $\sqrt{3}$.

- 1/ Soit A le point d'affixe $a = 1 + i\sqrt{2}$.
 - a) Montrer que A appartient au cercle (C).
 - b) Placer A.
- 2/ On considère dans \mathbb{C} , l'équation (E): $z^2 2i\sqrt{3}z 6i\sqrt{2} = 0$.
 - a) Montrer que le discriminant Δ de l'équation (E) est égal à $12a^2$.
 - b) En déduire que les solutions de l'équation (E) sont :

$$z_1 = \sqrt{3} \left[-1 + i(1 - \sqrt{2}) \right]$$
 et $z_2 = \sqrt{3} \left[1 + i(1 + \sqrt{2}) \right]$

- 3/ On considère le point K d'affixe $z_K = i\sqrt{3}$ et on désigne par M_1 et M_2 les points d'affixes respectives z_1 et z_2 .
 - a) Vérifier que K est le milieu du segment $[M_1M_2]$.
 - b) Montrer que $\frac{z_2 z_1}{a} = 2\sqrt{3}$.

En déduire que la droite (M₁M₂) est parallèle à la droite (OA).

- c) Montrer que $M_1M_2 = 6$.
- d) Placer le point K et construire alors les points M₁ et M₂.

1) Soit les nombres complexes $z_1 = \frac{\sqrt{5}}{2} - i \frac{\sqrt{3}}{2}$ et $z_2 = -\frac{\sqrt{5}}{2} - i \frac{\sqrt{3}}{2}$.

a) Calculer $z_1 + z_2$ et $z_1 \times z_2$.

b) En déduire que, pour tout nombre complexe z, $(z-z_1)(z-z_2) = z^2 + i\sqrt{3}z - 2$.

Dans la suite, on munit le plan complexe d'un repère orthonormé direct (O, u, v) et on considère les points M_1 et M_2 d'affixes respectives z_1 et z_2 .

- 2) Dans l'annexe ci-jointe (figure 2), on a tracé le cercle (C) de centre O et de rayon $\sqrt{2}$ et on a placé le point H d'affixe $\frac{-i\sqrt{3}}{2}$.
 - a) Montrer que M₁ et M₂ appartiennent au cercle (C).
 - b) Justifier que H est le milieu du segment [M₁M₂].
 - c) Construire les points M1 et M2.

Exercie 5:

3) Soit K le point d'affixe $-i\sqrt{3}$.

Soit z un nombre complexe et M et N les points du plan complexe d'affixes respectives z et z^3 .

a) Montrer que :

(K est le milieu du segment [M N]) si et seulement si ($z^3 + z + 2i\sqrt{3} = 0$).

- b) Vérifier que $z^3 + z + 2i\sqrt{3} = (z i\sqrt{3})(z^2 + i\sqrt{3}z 2)$.
- c) Résoudre, dans \mathbb{C} , l'équation $z^3 + z + 2i\sqrt{3} = 0$.
- d) Construire alors les points N_1 et N_2 d'affixes respectives z_1^3 et z_2^3 (On rappelle que z_1 et z_2 sont les affixes des points M_1 et M_2).
- e) Déterminer l'affixe a d'un point A de l'axe (O, v) dont le symétrique par rapport au point K est d'affixe a³.

www.devoirat.net 2014