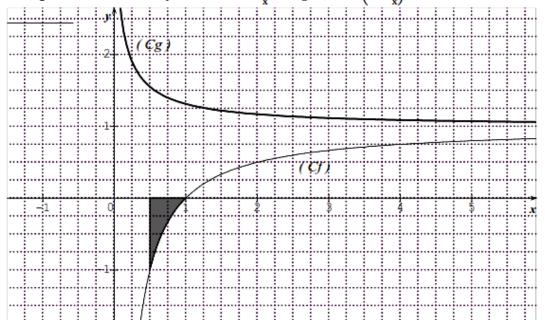
DEVOIR DE MAISON N° 3 MATHEMATIQUES

Prof : Med Khairedine

Bac sciences

Exercice 1 :

ed Knakedine On donne dans la figure suivante les courbes représentatives , dans un repère orthonormé (0,1,1,1), des deux fonctions f et g définies sur $]0, +\infty[$ par : $f(x) = 1 - \frac{1}{x}$ et $g(x) = \ln\left(e + \frac{1}{x}\right)$



Pour chacune des propositions suivantes dire si elle est vraie ou fausse. Les réponses seront écrites dans la grille fournie dans la feuille ANNEXE . Aucune justification n'est demandée .

- L'aire de la partie hachurée est $\int_{1/2}^{1} f(x) dx$.
- il existe un réel $c \in \frac{1}{2}$, 1 tel que $g'(c) = 2 \ln \left(\frac{e+1}{e+2}\right)$
- Les deux suites (U_n) et (V_n) définies sur \mathbb{N}^* par $:U_n = f(n)$ et $V_n = g(n)$, sont adjacentes.
- On note $C = \{M(x, y) \text{ tels que} : 1 \le x \le 2 \text{ et } y = f(x) \}$ l'arc de la courbe de f sur [1, 2]. Le volume du solide de révolution engendré par la rotation de l'arc C autour de (0,1),est :

$$\pi\left(\frac{3}{2}-2\ln 2\right)$$

Exercice 2:

On donne, dans la feuille ANNEXE, ci jointe, (C) la courbe représentative dans un repère orthonormé (0,1,1) de la fonction réciproque f⁻¹ d'une fonction f continue et strictement monotone sur]0, +∞[. La courbe (C) admet les droites d'équations y = x et y = 0 comme asymptotes et coupe l'axe des ordonnées en A(0, ln2).

a – Par lecture graphique déterminer :

$$f^{-1}(0) \ ; \ \lim_{x \to -\infty} f^{-1}(x) \ ; \lim_{x \to +\infty} f^{-1}(x) \ et \ \lim_{y \to +\infty} [y - f(y)]$$

b – En déduire :

$$\lim_{x \to 0^+} f(x)$$
 et $\lim_{x \to 0^+} f(x)$

 $\lim_{x\to 0^+} f(x) \ \text{et} \ \lim_{x\to +\infty} f(x)$ c – Tracer la courbe (C') de f ,dans le même repère (0, î, j) que (C), sur la feuille ANNEXE

- 2) En réalité on connait que : $f^{-1}(x) = \ln(e^{ax} + b)$, où a et b sont deux réels strictement positifs.
 - a Vérifier que $f^{-1}(x) = ax + ln(1 + be^{-ax})$, pour tout réel x strictement positif.
 - b Montrer que : a = b = 1.
 - c En déduire que pour tout réel x strictement positif, $f(x) = \ln(e^x 1)$.
- On considère la suite (I_n) telle que :

$$\forall n \in \mathbb{N}^*$$
, $I_n = \int_1^n e^{-x} \ln(e^x - 1) dx$

a - Montrer que la suite (In) est croissante.

b-A l'aide d'une intégration par parties calculer $\int_1^n xe^{-x} dx$. En déduire que pour tout $n \in \mathbb{N}^*$;

$$0 \le I_n \le -(n+1)e^{-n} + \frac{2}{e}$$

c - Montrer que la suite (In) est convergente.

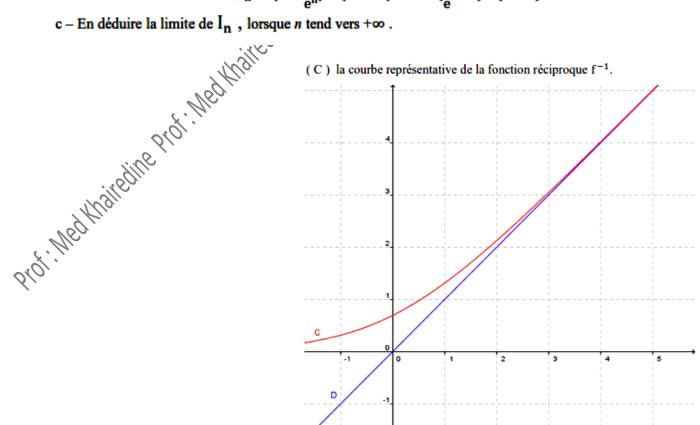
a - Vérifier que :

$$\forall x \neq 0 \; ; \; \frac{1}{e^x - 1} = \frac{e^x}{e^x - 1} - 1$$
b – Montrer en s'aidant d'une intégration par partie que :

$$\forall n \in \mathbb{N}^* \,, I_n = (1 - \frac{1}{e^n}) \ln(e^n - 1) - n + (\frac{1}{e} - 1) \ln(e - 1) + 1$$

c – En déduire la limite de I_n , lorsque n tend vers $+\infty$.

(C) la courbe représentative de la fonction réciproque f⁻¹.



Exercice 3:

Soit f la fonction définie sur $]0,+\infty[$ par : $f(x)=\frac{1}{\sqrt{e^{2x}-1}}$.

- a. Montrer que f est une bijection de]0,+∞ sur]0,+∞ .
 - b. Expliciter $f^{-1}(x)$ pour tout $x \in [0, +\infty)$.
 - c. Tracer la courbe Γ de f dans un repère orthonormé (O,i, j).
- Soit h la fonction définie sur $0, \frac{\pi}{2}$ par : h(x) = $\frac{1}{2}$ ln(1+tan²x).
 - a. Montrer que h est une bijection de $0, \frac{\pi}{2}$ sur $]0, +\infty[$.
 - b. Montrer que h^{-1} est dérivable sur $]0,+\infty[$ et que pour tout $x \in]0,+\infty[$ $(h^{-1})'(x)=f(x)$.
 - c. Pour tout $\lambda > \ln(\sqrt{2})$ on désigne par $\mathcal{A}(\lambda)$ l'aire de la partie du plan limitée par la courbe Γ et les droites d'équations respectives $x = \ln(\sqrt{2})$, $x = \lambda$ et y = 0. Montrer que $\lim_{\lambda \to +\infty} \mathcal{A}(\lambda) = \frac{\pi}{4}$.
- 3. Pour tout $n \in \mathbb{N}^+$, on pose : $U_n = \int_{\ln(\sqrt{2})}^1 \frac{dx}{\sqrt{e^{2nx} 1}}$.
 - a. Montrer que pour tout $n \in \mathbb{N}^*$, $U_n \ge 0$
 - b. Montrer que (Un) est décroissante, en déduire qu'elle est convergente.
 - c. Montrer que pour tout $n \in \mathbb{N}$, $U_n \leq \frac{1}{\sqrt{2^n-1}}$, en déduire $\lim_{n \to +\infty} U_n$.

Exercice 4:

Une urne A contient 2 boules rouges et 3 boules noires, une urne B contient 3 boules rouges et 2 boules noires.

On tire au hasard une boule de l'urne A:

- si elle est noire, on la place dans l'urne B,
- sinon, on l'écarte du jeu.

On tire au hasard ensuite une boule de l'urne B . On considère les événements suivants :

R₁ : « la boule tirée de A est rouge »

 N_1 : « la boule tirée de A est noire »

R₂: « la boule tirée de B est rouge »

N2: « la boule tirée de B est noire »

- 1) a) Déterminer les probabilités des événements R_1 et N_1 .
 - b) Calculer les probabilités des événements « R_2 sachant R_1 » et « R_2 sachant N_1 ».

En déduire que la probabilité de R_2 est de $\frac{27}{50}$.

- c) Calculer la probabilité de N₂.
- 2) On répète n fois l'épreuve précédente (tirage d'une boule de A, suivi du tirage d'une boule de B dans les mêmes conditions initiales indiquées ci-dessus), en supposant les différentes épreuves indépendantes.

Quel nombre minimum d'essais doit-on effectuer pour que la probabilité d'obtenir au moins une fois une

boule rouge de l'urne B soit supérieure à 0,99 ?