



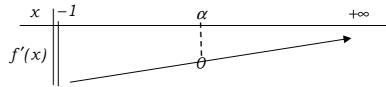




Soit f la fonction définie sur  $]-1,+\infty[$  par: f(x) = -2x + x.ln(x+1)

On désigne par (  $\zeta_f$  ) sa courbe représentative dans un repère orthonormé (O,  $\vec{i},\vec{j}$ )

- **1°) a.** Calculer:  $\lim_{x \to (-1)^+} f(x)$ 
  - **b.** Calculer:  $\lim_{x \to +\infty} f(x)$  et  $\lim_{x \to +\infty} \frac{f(x)}{x}$  puis interpréter graphiquement le résultat
  - **2°) a.** Montrer que pour tout  $x \in ]-1,+\infty[$  on  $a: f'(x) = -\frac{x+2}{x+1} + \ln(x+1)$ 
    - **b.** Le tableau suivant indique la variation de la fonction dérivée f' de f sur  $]-1,+\infty[$  et le réel  $\alpha$  est tel que:  $f'(\alpha) = 0$   $x \mid -1$   $\alpha$   $+\infty$



Donner le signe de f'(x) sur  $]-1,+\infty[$ 

- **c.** Dresser le tableau de variation de f
- **3°)** Dans la figure de l'annexe, on a tracé dans un repère orthonormé  $(O, \vec{i}, \vec{j})$  la courbe  $(\zeta_g)$  de la fonction g définie sur  $]-1,+\infty[$  par:  $g(x)=\frac{-x^2}{x+1}$  , la droite  $\Delta: x=-1$  et on a placé le réel  $\alpha$ 
  - **a.** Vérifier que :  $ln(\alpha+1) = \frac{\alpha+2}{\alpha+1}$  puis déduire que:  $f(\alpha) = g(\alpha)$
  - **b.** Construire le point P d'abscisse  $\alpha$  de la courbe ( $\zeta_f$ )
- **4°) a.** Déterminer les points d'intersection de (  $\zeta_f$  ) avec l'axe des abscisses
  - **b.** Tracer la courbe ( $\zeta_f$ ) dans la feuille annexe
- **5°) a.** Vérifier que pour tout  $x \in ]-1,+\infty[$  par:  $g(x) = 1-x-\frac{1}{x+1}$ 
  - **b.** Calculer:  $\int_0^\alpha g(x)dx$
  - c. A l'aide d'une intégration par parties, montrer que :

$$\int_0^\alpha x \ln(1+x) dx = \frac{1}{2} \alpha^2 \ln(\alpha+1) + \frac{1}{2} \int_0^\alpha g(x) dx$$

**d.** Soit  $\mathcal{A}$  l'aire de la partie du plan limitée par la courbe ( $\zeta_f$ ), l'axe des abscisses et

les droites d'équations : 
$$x = 0$$
 et  $x = \alpha$  . Montrer que :  $\mathcal{A} = \frac{3\alpha^3 - \alpha^2 + 4}{4(\alpha + 1)}$ 



Le personnel d'un hôpital est répartie en trois catégories. 12 % sont des médecins et 71 % sont des soignants et les autres sont des administratifs ou techniciens.

- 67 °/° des médecins sont des hommes.
- 92 °/° des soignants sont des femmes.

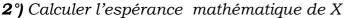
On choisit au hasard une personne du personnel et on considère les évènements :

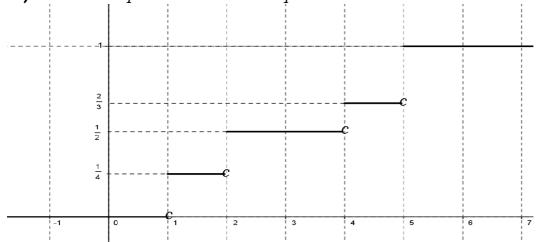
- M « la personne est un médecin » ; S « la personne est un soignant »
- A « la personne est un administratif ou technicien » et H « la personne est homme » Les résultats seront donnés à  $10^{-4}$  prés.
- 1°) a. Déterminer: p(M), p(S), p(A), p(H/M) et  $p(\overline{H}/S)$ 
  - **b.** Déterminer la probabilité pour que cette personne soit une femme soignante.
  - c. Déterminer la probabilité pour que cette personne soit une femme médecin.
- **2°)** On sait que 80 °/° du personnel sont des femmes .
  - **a.** Montrer que : $p(\overline{H} \cap A) = 0,1072$
  - **b.** Déterminer la probabilité pour que cette personne soit une femme sachant qu'elle fait partie du personnel administratif ou technicien.
  - **c.** Sachant que la personne choisie est un homme, déterminer la probabilité pour qu'il soit un médecin.

## EXERCICE N°3 04 pts

On donne ci-dessous la courbe représentative de la fonction de répartition F d'une variable aléatoire X

- **1°) a.** Quelle sont les valeurs prises par la variable X?
  - **b.** Déterminer:  $p(X \le 4)$  et p(X > 2)
  - **c.** Déterminer la loi de probabilité de X.







## Feuille annexe à rendre

