EXERCICE 1(4pts)

Une seule réponse proposée est correcte, aucune justification n'est démandée.

1. z et z' deux nombres complexes non nuls. |z| = |z'| équivaut à

a)
$$z = z'$$

b)
$$z = z'$$
 ou $z = -z'$ c) $\frac{z}{z'} = e^{i\alpha}, \ \alpha \in \mathbb{R}$

c)
$$\frac{z}{z'} = e^{i\alpha}, \, \alpha \in \mathbb{R}$$

2. Soit $z = 1 + e^{i\alpha}$ avec $\alpha \in \left[\frac{\pi}{2}, \pi\right[$ alors la forme exponentielle de z est:

a)
$$2\cos\left(\frac{\alpha}{2}\right)e^{i}\frac{\alpha}{2}$$

a)
$$2\cos\left(\frac{\alpha}{2}\right)e^{i\frac{\alpha}{2}}$$
 b) $-2\cos\left(\frac{\alpha}{2}\right)e^{i\frac{\alpha}{2}}$

c)
$$2\sin\left(\frac{\alpha}{2}\right)e^{i}\frac{\alpha}{2}$$

3. Soit $z = 2i \left(\sin \frac{\pi}{12} + i \cos \frac{\pi}{12} \right)$ on a:

a)
$$\arg z \equiv \frac{\pi}{12} [2\pi]$$
 b) $\arg z \equiv \frac{\pi}{4} [2\pi]$

b)
$$\arg z \equiv \frac{\pi}{4} [2\pi]$$

c)
$$\arg z \equiv \frac{11\pi}{12} [2\pi]$$

4. On pose $u_n = 1 + \frac{(-1)^n}{2n}$, pour tout $n \in \mathbb{N}^*$. On a:

a)
$$(u_n)$$
 est divergente

b)
$$(u_n)$$
 est croissante

c)
$$(u_{2n})$$
 et (u_{2n+1}) sont adjacentes

EXERCICE 2(4pts)

Soit la suite (u_n) définie sur \mathbb{N} par: $\begin{cases} u_0 = 1 \\ u_{n+1} = \frac{1}{2}\sqrt{8+2u_n^2}, \forall n \in \mathbb{N} \end{cases}$

1. (a) Calculer u_1

(b) Montrer que $0 < u_n < 2$, $\forall n \in \mathbb{N}$.

(a) Montrer que la suite (u_n) est croissante.

(b) En déduire que la suite (u_n) est convergente.

(a) Montrer que $\forall n \in \mathbb{N} : (2 - u_{n+1}) \le \frac{2}{3}(2 - u_n)$

(b) En déduire que $\forall n \in \mathbb{N} : |u_n - 2| \le \left(\frac{2}{3}\right)^n$

(c) Calculer alors $\lim_{n \to +\infty} u_n$

EXERCICE 3(6pts)

Soit f la fonction définie par $f(x) = \sqrt{x^2 - 1} + x$

1. (a) Déterminer D_f

(b) Calculer $\lim_{x \to +\infty} f(x)$ et $\lim_{x \to -\infty} f(x)$

(a) Etudier la dérivabilité de f à droite en 1 et à gauche en -1.

(b) Intérpreter géometriquement les résultas obtenus

(a) Montrer que la droite D: y = 2x est une asymptote oblique à C_f au voisinage de $+\infty$.

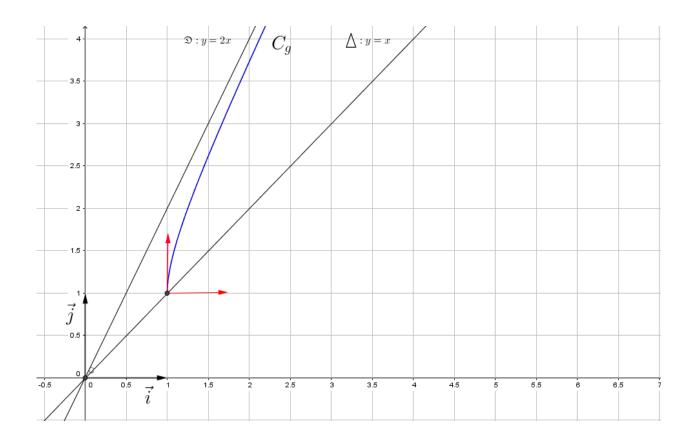
- (b) Montrer que $\left\{ \begin{array}{l} f'(x) < 0 \ , \forall \ x < -1 \\ f'(x) > 0 \ , \forall \ x > 1 \end{array} \right.$
- (c) Dresser le tableau de variations de f.
- 4. Soit g la restriction de f sur l'intervalle $[1, +\infty[$
 - (a) Montrer que g est une bijection de $[1, +\infty[$ sur un intervalle J que l'on précisera.
 - (b) Calculer $g^{-1}(2)$ et $(g^{-1})'(2)$.
 - (c) Etudier la dérivabilité de g^{-1} et tacer $(C_{g^{-1}})$.
- 5. Soit h la fonction définie sur $\left[0, \frac{\pi}{2}\right[\text{ par } h(x) = g\left(\frac{1}{\cos x}\right).$
 - (a) Montrer que $h(x) = \frac{1 + \sin x}{\cos x}$, $\forall x \in \left[0, \frac{\pi}{2}\right[$
 - (b) Montrer que h est une bijection de $\left[0, \frac{\pi}{2}\right[$ sur un intervalle K que l'on précisera.
 - (c) Montrer que h^{-1} est dérivable sur K et $(h^{-1})'(x) = \frac{2}{1+x^2}$

EXERCICE 4(6pts)

Le plan complexe est rapporté à un repère orthonormé direct $(O, \overrightarrow{u}, \overrightarrow{v})$.

- 1. (a) Vérifier que $z_0 = \sqrt{2}e^{i\frac{\pi}{6}}$ est une racine quatérième de $-2 + 2i\sqrt{3}$.
 - (b) Ecrire alors sous forme algébrique les racines quatérième de $-2 + 2i\sqrt{3}$.
- 2. Soit $f(z) = z^2 (-1 + 2i\sqrt{3})z 2 + 2i\sqrt{3}, \forall \in \mathbb{C}$
 - (a) Calculer f(1)
 - (b) En déduire les solutions de l'équation f(z) = 0.
 - (c) Résoudre dans $\mathbb C$ l'équation: $z^8 (-1 + 2i\sqrt{3})z^4 2 + 2i\sqrt{3} = 0$
- 3. Soient les points A(1), $B(-2+2i\sqrt{3})$ et C(c) avec c le nombre complexe d'argument $\frac{\pi}{3}$ et dont la partie réelle est $\frac{5}{2}$.
 - (a) Placer les points A, B et C (laisser les traces de constructions apparentes).
 - (b) Déterminer |c| puis écrire c sous forme algébrique.
- 4. (a) Déterminer $\frac{AB}{AC}$ et donner une mesure de l'angle orienté $(\overrightarrow{AB}, \overrightarrow{AC})$.
 - (b) En déduire la nature du triangle ABC.

Annexe à rende avec la copie



BON TRAVAIL