Lycée <i>Djerba</i>	Devoir de synthèse n°3	Année scolaire : 2010/2011 Sections : 4 ^{ème} Sc.Ex.
	Sciences physiques	Durée : 3 heures

<u>Chimie</u>	<u>Physique</u> :			
✗ Piles électrochimiques	 ✗ Spectre atomique ✗ Stabilité du noyau ✗ Réactions nucléaires ✗ Energie nucléaire 			
Chimie (7 points)				

Première partie

On donne le potentiel standard du couple ($\mathbf{Fe^{2+}/Fe}$): $E^0_{(\mathbf{Fe^{2+}/Fe})} = -0.44 \text{V}$

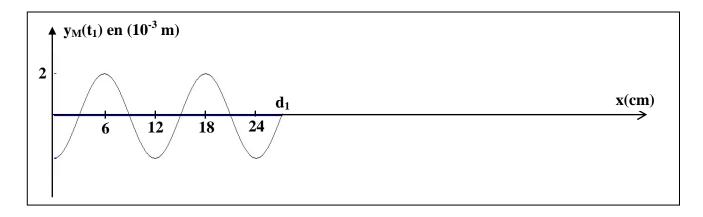
- 1) Définir le potentiel standard d'un couple redox.
- 2) a Représenter le schéma du montage qui permet de mesurer le potentiel standard du couple (${\bf Fe^{2^+}/Fe}$) . b - Donner le symbole de cette pile et écrire l'équation chimique associée.

Deuxième partie

Fe | $\mathbf{Fe}^{2+}(C_1 \text{ mol.L}^{-1}) \parallel \mathbf{Co}^{2+}(C_2 \text{ mol.L}^{-1}) \mid \mathbf{Co}$ On considère la pile symbolisée par :

La force électromotrice initiale de cette pile est $E_i = -0.15 \text{ V}$

- Ecrire l'équation chimique associée à cette pile.
- Ecrire, en le justifiant, l'équation de la réaction qui se produit spontanément dans la pile. 2)
- Donner l'expression de la f.e.m. E de cette pile en fonction de sa f.e.m. normale E⁰ et des 3) concentrations molaires [Fe²⁺] et [Co²⁺].
- On laisse la pile débiter jusqu'à ce que le courant dans un circuit extérieur s'annule.
 - a Sachant que la masse des électrodes ne limite pas la réaction, pour quelle raison la pile s'arrêtera-t-elle de débiter?
 - b En déduire comment varie la f.e.m E de la pile au cours du temps.
- c Déterminer la valeur de la constante d'équilibre K relative à l'équation associée à la pile. <u>On donne</u>: $[Co^{2+}]_{eq} = 4,64 \cdot .10^{-6} \text{ mol.L}^{-1}$ et $[Fe^{2+}]_{\acute{e}q} = 1 \text{ mol.L}^{-1}$ d- En déduire que la valeur de $E^0 = 0,16 \text{ V}$.
- a Calculer le potentiel standard du couple $E^0_{(Co^{2+}/Co)}$ sachant que $E^0_{(Fe^{2+}/Fe)} = -0,44V$. 5)
 - b Comparer le pouvoir réducteur des deux couples considérés dans cette pile.
- Sachant les solutions continues dans les deux compartiments de la pile ont le même volume
 - a- Déterminer l'avancement volumique final de réaction spontanée
 - b- Déduire les concentrations initiales C_1 et C_2 .
- Quand la pile est usée on double le volume de la solution contenant les ions Sn²⁺ en ajoutant de l'eau.
 - Expliquer l'effet de cette dilution sur la f.e.m. de la pile.
 - Montrer que la nouvelle valeur de cette f.e.m.est E'= 0,03 log 2


Physique (13 points)

Exercice N°1

L'extrémité (S) d'une lame est en mouvement vibratoire sinusoïdal vertical de fréquence N et d'amplitude a produit le long d'une corde, tendue horizontalement de longueur L= 1m, une onde progressive.

L'extrémité S débute son mouvement à t = 0 s à partir de l'origine des élongations (y=0) avec une vitesse de valeur $v_s(0) = -0.4\pi \text{ ms}^{-1}$.

- 1°) Proposer un schéma du dispositif expérimental qui permet de produire cette onde.
- 2°) En éclairant la corde par la lumière stroboscopique on constate que la plus grande valeur de la fréquence des éclairs pour laquelle la corde paraît immobile est $N_e = 100$ Hz. Montrer que la fréquence de la lame vibrante est égale N = 100 Hz.
- 3°) Déterminer l'équation horaire de l'extrémité (S).
- 4°) Pour un éclairage convenable du stroboscope, la corde pariât en mouvement ralenti. Ce qui a permit de mesurer la plus petite distance d entre deux points de la corde vibrant en opposition de phase. On trouve d = 6 cm. Montrer que la célérité avec laquelle l'onde se propage est C = 12 m.s⁻¹.
- 5°) a- Montrer que l'équation horaire du mouvement d'un point M_1 de la corde situé à la distance $x_1 = 18$ cm de la source est $y_M(t) = \dots$
 - b-Représenter, sur la figure 1 de la feuille annexe, le diagramme de mouvement de M₁.
 - c- Sur la même figure, représenter celui du point M_2 situé à une distance $x_2 = 21$ cm de la source.
 - d- Comparer le mouvement de M₁ et M₂.
- 6°) La figure ci-dessous représente l'aspect de la corde à l'instant t₁.

- a- Que représente d₁ ? Déterminer graphiquement sa valeur. En déduire l'instant t₁.
- b- Déterminer l'équation de cette courbe.
- c-Représenter, sur la figure 2 de la feuille annexe, l'aspect de la corde à l'instant $t_2 = 2.5.10^{-2}$ s.
- 7°) a- Déterminer la date t₃ à laquelle l'onde arrive à l'extrémité de la corde.
 - b- A partir de cette date, déterminer le nombre et les positions de points de la corde qui vibrent en opposition de phase avec S.

Exercice N°2

On donne : la célérité de la lumière $c=3.10^8~m.s^{-1}$; la constante de Planck $h=6,62.10^{-34}~J.s$; $1~eV=1.6.10^{-19}~J$

Les niveaux d'énergie de l'atome d'hydrogène sont donnés par la relation $E_n = -\frac{E_0}{n^2}$,

avec $E_0 = 13.6 \text{ eV}$ et n entier non nul.

- 1°) Sur le diagramme de la figure 1, sont représentés quelques niveaux d'énergie de l'atome d'hydrogène.
 - a- Calculer les énergies E_2 et E_4 en eV.

b- Compléter le diagramme de la figure 1 en indiquant les valeurs des énergies calculées, ainsi que le niveau $E_n = 0$.

2°)

- a- Calculer la valeur de l'énergie qu'il faut fournir à l'atome d'hydrogène pour provoquer sa transition de niveau fondamental au niveau n = 3.
- b- Sachant que cette énergie est apportée par un photon de longueur d'onde λ . Déterminer la valeur de λ .
- c- Représenter par une flèche cette transition sur le diagramme précédent.
- 3°) L'atome d'hydrogène étant de nouveau dans son état fondamental, il absorbe un photon de longueur d'onde égal à 8,5.10⁻⁸ m.
 - a- Déterminer l'énergie W du photon absorbé.
 - b- Comparer W et E₀. Déduire l'état de l'atome.
- 4°) La désexcitation de l'atome d'hydrogène, de niveau d'énergie p (p> 2) vers le niveau d'énergie n=2 se manifeste par l'émission des radiations lumineux de longueurs d'onde $\lambda_{2,p}$. Les raies correspondant à ses transitions constituent la série de Balmer.
 - a- Montrer que $\Delta E.\lambda_{2,p} = h.C$ avec ΔE représente la variation de l'énergie de l'atome d'hydrogène de niveau d'énergie n = 2 au niveau d'énergie p.
 - b- Déduire que $\Delta E.\lambda_{2,p}$ =1241 ,25 ; ΔE exprimée en eV et $\lambda_{2,p}$ en nanomètre.
 - c- L'analyse du spectre d'émission de l'atome d'hydrogène révèle la présence de radiations visible de longueur d'onde : $\lambda_{2,3}$, $\lambda_{2,4}$, $\lambda_{2,5}$ et $\lambda_{2,6}$.

• Compléter le tableau suivant, sur l'annexe à rendre avec la copie, en calculant la longueur d'onde de chaque radiation.

p	3	4	5	6
Nom de raie	H_{lpha}	H_{eta}	H_{γ}	H_{δ}
Couleur de raie	Rouge	Bleue-Verte	Indigo	Violette
Longueur d'onde $\lambda_{2,p}$ (nm)				

- Représenter ces transitions sur le diagramme des niveaux d'énergie de l'hydrogène.
- Représenter approximativement le spectre d'émission de l'atome d'hydrogène dans la série de Balmer.

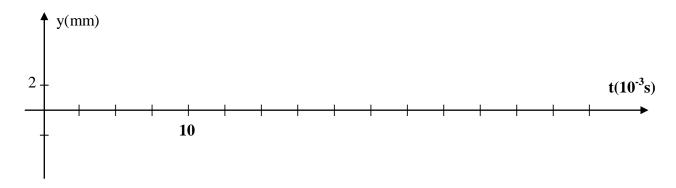
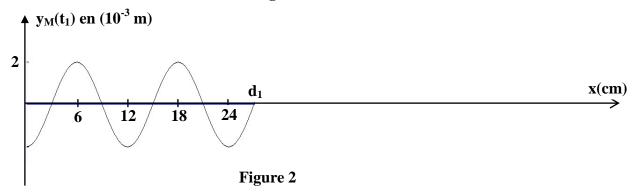
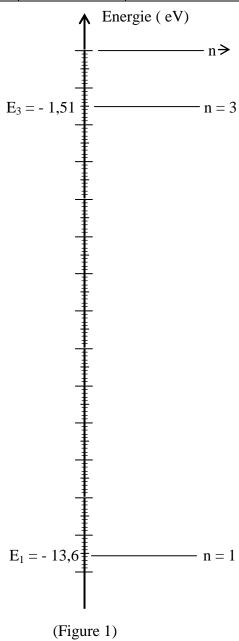




Figure 1

p	3	4	5	6
Nom de raie	H_{α}	H_{eta}	H_{γ}	H_{δ}
Couleur de raie	Rouge	Bleue-Verte	Indigo	Violette
Longueur d'onde $\lambda_{2,p}$ (nm)				

