E.P Ghar El Melh Année scol :2017/2018	Devoir de contrôle 4	Prof : weldi karim Niveau : 1 ^{ére} année								
Affice Scot .2017/2016	Science physique	Niveau . 1 annee								
Nom § prénom :										
9 F -4-2-3	Chimie (8 p)									
Exercice 1:	\ 1									
Ajuster la stœchiométrie des é	quations chimiques suivantes:	(2)								
• $C_6H_{12}O_6 + O_2 \rightarrow CO_2$	$_{1}$ + $H_{2}O$									
• FeO + $H_2O \rightarrow Fe_3C$										
• $C_6H_6 + HNO_3 \rightarrow C_6$										
• $FeCl_3$ + $MgO \rightarrow Fe$	$_{2}O_{3} + MgCl_{2}$									
Exercice 2:	les mucuieus nhete anenhes feis	voient haulen un meneceu de								
	, les premiers photographes fais l'air qui contient de dioxygène (
blanc : l'oxyde de magnésium		O2). If se forme afors an some								
1) Ecrire l'équation de la réac	` • /									
*										
2) Donner la signification ma	acroscopique de cette réaction ((0,5)								
On brule un morceau de masse	e m = 2 g de magnésium dans l'									
3) Calculer la quantité n ₁ de 1		uii								
, -	la quantité n ₁ de magnésium bi	rulé et la quantité n ₂ de								
dioxygène consommé. (1)										
5) En déduire le quentité n. d	la diovygàna consommá at guar	atitá n. d'ovyda da magnásium								
MgO produit. (1)	le dioxygène consommé et quar	itite ii ₃ d oxyde de magnesium								
(1)										
6) Calculer le volume de diox	kygène consommé. (1)									
7) Calculer la masse d'oxyde	de magnésium MgO produit. (1)								
······································										
On donne $M(Mg) = 24.3 g$	$g.mol^{-1}$; $M(O) = 16 g.mol^{-1}$; V_n	$_{1}$ = 24 L.mol ⁻¹								
Exercice 1:	Physique (12 p)									
Exercice 1:										
1) Quelle est la relation de proj	portionnalité qui lie le poids à la	a masse ? (0,5)								
2) Una rocha lungira a una ma	sse de 150 g. Quelle est sa vale	ur an kilogramma 9								
$M = 150 \text{ g} = \dots$		ui on knogramme :								
_	roche sur la lune ? Justifiez la r	réponse. (0,75)								

 	 • • •	 • •	 	• •	• •	 	 	 • •	• •	٠.	• •	 • •	• •	٠.	 	 • •	• •	• •	• •	 	 	• •	• •	 • •	• •	• • •	 	 	 	• •	٠.	 	• •	• •

4) Quel est le poids de la roche lunaire sur Terre ? (On prendra $\ \vec{g}_{terre}\ = 10 \text{ N/kg}$) (0)
--

5) Quel est le poids de la roche lunaire sur la Lune ? sachant que $\frac{\|\vec{P}_{terre}\|}{\|\vec{P}_{lune}\|} = 6$ (0,75)

||Flune||

6) Déduire l'intensité $\|\vec{g}_{lune}\|$ de la lune. (0,75)

Exercice 2:

1) Compléter le tableau suivant : (2,25)

) Completed to tableau	341 vant . (2,23)		
Action	Qui subit l'action	Qui exerce l'action	Type d'action (de
	(receveur)	(acteur)	contact/à distance)
Action d'un marteau			
sur un clou			
Action d'un pied sur			
un ballon			
Action du vent sur			
un drapeau			

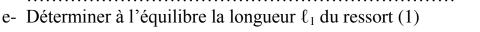
2) On prendra $\|\vec{g}\| = 10 \ N. Kg^{-1}$.

Un solide S_1 de masse m = 600 g est accroché à l'extrémité d'un ressort R_1 de longueur à vide $\ell_0 = 10$ cm et de raideur $K_1 = 200$ N.m⁻¹. A l'équilibre

Ressort+ masse

à l'équilibre

Ressort au repos


le ressort prend la longueur ℓ_1 .

a- Citer les forces qui s'exercent sur le solide S_1 . (0,5)

- b- Ecrire la condition d'équilibre du solide S (0,25)
- c- Calculer la valeur du poids $\|\vec{P}\|$ (1)

d- Déduire la valeur de la tension du ressort $\|\vec{T}\|$ (0,5)

......

- d- représenter les forces sur le montage en respectant échelle 1cm pour 3 N (1)
- 3) On refait la même expérience mais avec un ressort R_2 plus raide que le ressort R_1 Encadrer la bonne réponse. (1,5)
 - La raideur K_2 est (supérieur / inférieur / égale) à la raideur K_1
 - La tension $\|\vec{T}_2\|$ est (supérieur / inférieur / égale) à la tension $\|\vec{T}_1\|$
 - L'allongement $\Delta \ell_2$ est (supérieur / inférieur / égale) à L'allongement $\Delta \ell_1$

