$L-S-Omar\ Elkalchéni\ Béja$

05 / 03 / 2014

Classe: $4sc_3$

Prof: Slah Khal²ouli

Devoir de synthèse n°2

Durée: 3h

Exercice 1: (03)

Répondre par vrai ou faux . (sans justification) .

1) Si
$$\vec{v} = -2 \vec{u}$$
 et $\|\vec{v}\| = 2$ alors le réel $\vec{u} \cdot \vec{v} = -2$.

2) Si
$$\vec{u} \cdot \vec{v} = \vec{u} \cdot \vec{w}$$
 alors $\vec{v} = \vec{w}$.

3) Si
$$\overrightarrow{w} = 2 \overrightarrow{u}$$
 alors det $(\overrightarrow{u}, \overrightarrow{v}, \overrightarrow{w}) = 2$.

Exercice 2: (07)

L'espace est muni d'un repère orthonormé direct (O , \vec{i} , \vec{j} , \vec{k}) .

Soit les points A(-3,0,0), B(-3,1,-1) et C(1,4,4) et le plan P d'équation cartésienne : x-2y+4z-9=0.

- 1)a) Déterminer $\overrightarrow{AB} \wedge \overrightarrow{AC}$.
 - b) En déduire que les points A, B et C déterminent un plan.
 - c) Vérifier qu'une équation cartésienne du plan (ABC) est: 2x y z + 6 = 0.
- 2) Montrer que les plans (ABC) et P sont perpendiculaires .
- 3) Soit Δ la droite d'intersection de P et (ABC).

Montrer qu'une représentation paramétrique de la droite Δ

est:
$$\begin{cases} x = -7 + 2t \\ y = -8 + 3t ; t \in \mathbb{R}. \\ z = t \end{cases}$$

- 4) Soit I le point de coordonnée (-9,-4,-1).
 - a) Calculer les distances d(I,P) et d(I, (ABC)).
 - b) Déterminer la distance du point I à la droite Δ .

Exercice 3: (04)

Soit les intégrales :
$$I = \int_0^{\ln 2} \frac{e^t}{1 + e^t} dt$$
 et $J = \int_0^{\ln 2} \frac{1}{1 + e^t} dt$.

- 1) a) Vérifier que : I = ln(3/2) et I + J = ln2. b) En déduire la valeur de J.
- 2) a) Vérifier que : $\frac{1}{1 + e^t} = \frac{e^{-t}}{1 + e^{-t}}$. b) Retrouver la valeur de J.
- 3) a) Vérifier que : $\frac{e^{2t}}{1+e^t} = e^t 1 + \frac{1}{1+e^t}$.
 - b) En déduire la valeur de l'intégrale $K = \int_0^{\ln 2} e^t \ln (1 + e^t) dt$.

Exercice 4: (06)

Soit f la fonction définie sur \mathbb{R} par : $f(x) = \frac{1}{1 + e^x}$

- 1) a) Calculer f'(x), en déduire que f est strictement décroissante sur $\mathbb R$.
 - b) Dresser le tableau de variation de f.
 - c) Montrer que f réalise une bijection de \mathbb{R} sur l'intervalle]0,1[. (on note g sa fonction réciproque)
- 2) a) Donner une équation cartésienne de la tangente T à la courbe C_f au point d'abscisse 0 .
 - b) Montrer que g est dérivable en $\frac{1}{2}$ et déterminer $g'(\frac{1}{2})$.
- 3) Montrer que C_f admet un point d'inflexion I que l'on précisera .
- 4) Expliciter g(x), pour tout x de l'intervalle]0,1[.
- 5) Tracer T et C_f dans un repère orthonormé.
- 6) Calculer l'aire de la partie du plan limitée par la courbe C_f , l'axe des , abscisses et les droites d'équations x = 0 et $x = \ln 2$.