Lycée secondaire: ALI BOURGUIBA KALAA KBIRA
Année scolaire: 2011 - 2012

Prof: MAATALLAH
Devoir de synthèse n° 2
Classe: 4 Sc 1

Epreuve: Mathématiques
Date: 07-03 - 2012
Durée: 3 heures

Exercice nº 1: (2 points)

Pour chaque question une seule réponse est correcte. Relever cette réponse.

1) F est la primitive sur \mathbb{R} de f qui prend la valeur f en -1. Si $\int_{-1}^{1} f(t)dt = 1$ alors:

a) F(1) = -2

b) F(1) = 4

c) F(1) = 2

2) $I = \int_1^e (x \ln x)^2 dx$ est égale à :

a) $\frac{(5e^3-2)}{27}$

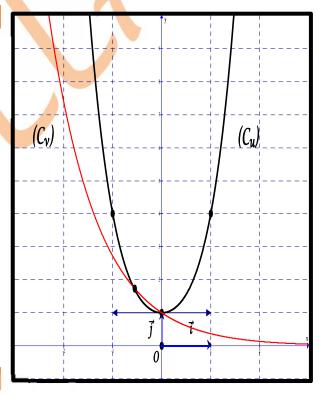
b) $\frac{(3e^3-2)}{27}$

c) $\frac{(4e^3+2)}{27}$

Exercice n° 2: (6 points)

Soit u et v deux fonctions deux fois dérivables sur \mathbb{R} , représentées ci-contre dans un repère orthogonal $(0, \vec{\iota}, \vec{j})$ et $f: x \mapsto \frac{u'(x) + u(x)}{u(x)}$

- 1) a) Montrer que $F(x) = \int_0^x f(t)dt$ est dérivable sur \mathbb{R} . Donner F'(x)
 - b) Déduire que $\forall x \in \mathbb{R} : F(x) = \ln(u(x)) + x$.
- 2) On admet que $\forall x \in \mathbb{R} : u(x) = x^4 + ax^2 + b$ où $(a, b) \in \mathbb{R}^2$ et $v(x) = e^{-x}$. Soit (C) la courbe de F dans un repère orthonormé.
- a) Etudier les problèmes de limites et montrer que Δ : y = x est une direction à (C) au voisinage de l'infini . Donner la position de Δ et (C) .
- b) Montrer que : F(x)=0 admet , dans $\mathbb R$, exactement deux solutions 0 et $\alpha\in]-1,0[$.
- c) Construire la partie de (C) sur $[0, +\infty[$. Préciser la tangente à (C) au point d'abscisse 0 .
- 3) Calculer $\int_{-1}^{1} f(t) dt$. Déduire que f(x) = 1 admet , dans [-1,1] , au mois une solution .



Exercice nº 3: (6 points)

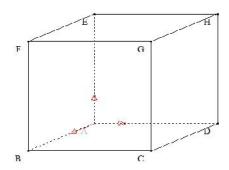
- 1) Soit g la fonction définie sur]-1,1[par : $g(x) = \frac{x^2}{1-x^2}$
 - a) Déterminer les réels a, b et c tels que $\forall x \in]-1,1[: g(x)=a+\frac{b}{1-x}+\frac{c}{1+x}]$
 - b) En déduire la primitive G de g sur]-1,1[qui s'annule en 0 .
- 2) Soit *H* la fonction définie sur $[\frac{\pi}{3}, \frac{\pi}{2}]$ par : $H(x) = G(\cos x)$.
 - a) Montrer que H est dérivable sur $\left[\frac{\pi}{3}, \frac{\pi}{2}\right]$ et que $\forall x \in \left[\frac{\pi}{3}, \frac{\pi}{2}\right]$: $H'(x) = \frac{-\cos^2 x}{\sin x}$
 - b) En déduire la valeur de $I = \int_{\frac{\pi}{3}}^{\frac{\pi}{2}} \frac{\cos^2 t}{\sin t} dt$
 - c) Calculer $J = \int_{\frac{\pi}{3}}^{\frac{\pi}{2}} sint.ln(sint) dt$

immercice 4: (6 mmints)

limspace est apport un repère orthonormé direct $(A, \vec{\iota}, \vec{j}, \vec{k})$ et ABCDEFGH est un parallélé el qui :

 $\vec{A} = 2\vec{i}$, $\vec{A} = 4\vec{j}$ and $\vec{A} = 3\vec{k}$

- 1) a) Vérifier que $\vec{k}_{i} = 2\vec{i} + 4\vec{j} + 3\vec{k}$. Déterminer les composantes de chacun des vecteurs : $\vec{k}_{i} = \vec{k}_{i} + 4\vec{j} + 3\vec{k}$.
 - b) Déterminer une équation cartésienne du plan (EBG).
- 2) Soit α un réel différent de 1 et M le point de coordonnées $(2\alpha, 4\alpha, 3\alpha)$.
 - a) Vérifier que M décrit la droite (AG) privée du point G.
 - b) Montrer que M n'appartient pas au plan (EBG).
- 3) Soit $\mathcal V$ le volume du tétraèdre EBG .
 - a) Exprimer $\mathcal V$ en fonction de α .
 - b) Calculer le volume du tétraèdre AEBG .
 - c) Pour quelle valeur de α , $\mathcal V$ est –il égal au volume du parallélépipède ABCDEFGH ?



Il sera tenu compte de la rédaction et la bonne présentation de la copie.