Lycée Ibn khaldoun Jemmel

Classe: 4^{ème} sciences

Devoir de Contrôle N°2

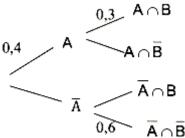
Le 12 / 03 / 2021

Prof: Garrab wissem

Durée: 2 heures

Exercice N°1:(3points)

Une expérience aléatoire est représentée par l'arbre de probabilité suivant :



1- Déterminer :

$$p(\bar{A})$$
 , $p(\bar{B}/A)$, $p(B)$ et $p(A \cup B)$.

2- les événements A et B sont-il indépendants ? Justifier.

Exercice N°2: (3.5 points)

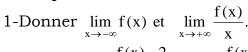
On donne la courbe ζ_f d'une fonction f définie sur \Box

L'axe des abscisses une asymptote horizontale à ζ_f au voisinage de $(-\infty)$

 ζ_f admet un point anguleux de coordonnées (2, 3-)

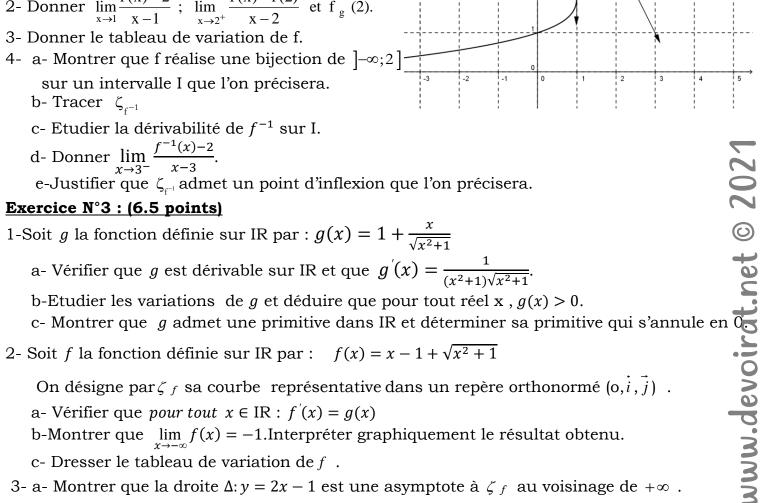
 ζ_f admet Une tangente verticale au point (1, 2).

Par une lecture graphique répondre aux questions suivantes:



2- Donner
$$\lim_{x\to 1} \frac{f(x)-2}{x-1}$$
; $\lim_{x\to 2^+} \frac{f(x)-f(2)}{x-2}$ et f_g (2).

3- Donner le tableau de variation de f.



Exercice N°3: (6.5 points)

1-Soit g la fonction définie sur IR par : $g(x) = 1 + \frac{\lambda}{\sqrt{x^2+1}}$

2- Soit *f* la fonction définie sur IR par : $f(x) = x - 1 + \sqrt{x^2 + 1}$

3- a- Montrer que la droite Δ : y = 2x - 1 est une asymptote à ζ_f au voisinage de $+\infty$.

b- Ecrire une équation de la tangente T à ζ_f en O et étudier la position de T par rapport à ζ_f .

- 4- a-Montrer que f réalise une bijection de IR sur un intervalle J que l'on précisera.
 - b- Calculer $(f^{-1})'(\sqrt{2})$.
 - c- Expliciter f^{-1} .
 - d- Tracer $C_{f^{-1}}$:La courbe de f^{-1} dans le même repère .

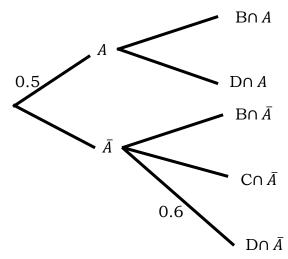
Exercice N°4: (7points)

On dispose d'une urne U_1 contenant deux boules noires numérotées 1,2 et deux boules blanches numérotées 1,1. Toutes les boules sont indiscernables au toucher .

- 1-On tire trois boules de U_1 l'une après l'autre en remettant, à chaque fois, la boule dans l'urne. Calculer les probabilités des évènements suivants :
 - E₁ « Avoir trois boules de même couleur »
 - $E_2\,$ « Avoir exactement une seule boule noire et une seule boule numéroté $2\,$ »
 - E_3 « la boule blanche apparait pour la première fois au deuxième tirage »
- 2- On dispose d'une autre urne U_2 Contenant une boules noire et trois boules blanches . On procède à l'expérience aléatoire suivante :

On tire au hasard une boule de U_1 .

- Si elle est blanche , on la remet dans U_1 et on tire simultanément deux boules de U_2 .
- Si elle est noire , on la remet dans U_2 et on tire simultanément deux boules de U_2 . On considère les événements suivants :
- A « La boule tirée de U_1 est blanche »
- B « On tire deux boules blanches de l'urne U_2 »
- C « On tire deux boules noires de l'urne U_2 »
- D « On tire deux boules de couleurs différentes de l'urne U_2 »
- a- Recopier et compléter l'arbre de choix suivant :



b-Déterminer p(B) et p(D).

- c- les deux boules tirées de U_2 sont blanches, quelle est la probabilité que la boule tirée de U_2 est blanche.
- d-Montrer que la probabilité qu'il ne reste aucune boule noire dans U_2 est égale à $\frac{3}{10}$.
- e- quelle est la probabilité qu'il reste au moins une boule noire dans U_2 .

www.devoirat.net @ 2021