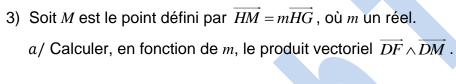
Lycée Tahar Sfar Mahdia	<u> Beboir de contrôle nº 2</u> Mathématiques	Niveau : 4 ème Sc exp ₁
<u>Date</u> : 04/12/2017	<u>Prof</u> : Meddeb Tarek	<u>Durée</u> : 2 heures

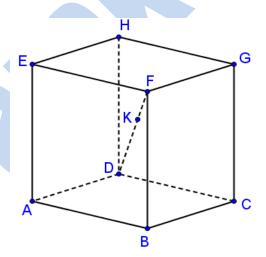
Exercice n°1 : (7pts)

Soit ABCDEFGH un cube d'arête 1. On munit l'espace du repère orthonormé direct $\left(D, \overrightarrow{DA}, \overrightarrow{DC}, \overrightarrow{DH}\right)$.

- 1) Soit K le point définie par : $\overrightarrow{DK} = \frac{2}{3}\overrightarrow{DF}$. Montrer que K a pour coordonnées $\left(\frac{2}{3}; \frac{2}{3}; \frac{2}{3}\right)$.
- 2) Montrer que les droites (EK) et (DF) sont orthogonales.



b/ En déduire, en fonction de m, l'aire \mathcal{A} du triangle MDF.



- c/ Montrer que le volume \mathcal{V} du tétraèdre EMDF ne dépend pas de m.
- 4) On note d_m la distance du point E au plan (MDF).
 - a/ Montrer que $d_m = \frac{1}{\sqrt{2m^2 2m + 2}}$.
 - b/ Déterminer la valeur de m pour laquelle la distance d_m est maximale.
 - c/ En déduire que, lorsque la distance d_m est maximale, le point K est le projeté orthogonal de E sur le plan (MDF).

Exercice n°2 : (6 pts)

Soient U et V les suites réelles définies sur IN par :

$$U_0 = 3$$
, $V_0 = 1$, $U_{n+1} = \frac{9U_n + 2V_n}{10}$ et $V_{n+1} = \frac{2U_n + 6V_n}{10}$.

- 1) On pose, pour tout $n \in IN$, $W_n = U_n 2V_n$.
 - a/ Montrer que W est une suite géométrique de raison $\frac{1}{2}$.

b/ Exprimer W_n en fonction de n puis calculer $\lim_{n\to +\infty} W_n$.

- 2) a/ Montrer que la suite U est décroissante et que V est croissante.
 - b / Montrer que, pour tout $n \in IN$, on a : $2 \le 2V_n \le U_n \le 3$.

En déduire que U et V sont convergentes.

c/ On note $l=\lim_{n\to +\infty}U_n$ et $l'=\lim_{n\to +\infty}V_n$. Montrer que l=2l ' .

- 3) On pose, pour tout $n \in IN$, $t_n = 2U_n + V_n$.
 - a/ Montrer que t est une suite constante, en déduire que 2l+l'=7.
 - b/ Déterminer alors l et l'.

Exercice n°3 : (7pts)

On considère les nombres complexes z_n définis, pour tout $n \in IN$, par :

$$z_0 = 1$$
 et $z_{n+1} = \left(1 + i\frac{\sqrt{3}}{3}\right)z_n$.

Le plan complexe est rapporté à un repère orthonormé (O, \vec{u}, \vec{v}) . On note A_n le point d'affixe z_n .

- 1) a/Vérifier que $1+i\frac{\sqrt{3}}{3}=\frac{2}{\sqrt{3}}e^{i\frac{\pi}{6}}$.
 - b/ Donner alors la forme exponentielle de z_1 et z_2 .
- 2) a/ Montrer que, pour tout $n \in IN$, $z_n = \left(\frac{2}{\sqrt{3}}\right)^n e^{i\frac{n\pi}{6}}$.
 - b/ Déterminer les entiers n pour lesquelles les points O, A_0 et A_n sont alignés.
- 3) On pose, pour tout $n \in IN$, $d_n = |z_{n+1} z_n|$.
 - a/ Donner une interprétation géométrique de d_n . Calculer d_0 .
 - b/ Montrer que, pour tout $n \in IN$, $z_{n+2} z_{n+1} = \left(1 + i\frac{\sqrt{3}}{3}\right)(z_{n+1} z_n)$.
 - c/ En déduire que la suite (d_n) est géométrique puis que $d_n = \frac{\sqrt{3}}{3} \left(\frac{2}{\sqrt{3}}\right)^n$, pour tout $n \in IN$.
- 4) a/ Montrer que, pour tout $n \in IN$, on a : $|z_{n+1}|^2 = |z_n|^2 + d_n^2$.
 - b/ En déduire que le triangle OA_nA_{n+1} est rectangle en A_n .
 - c/ Placer, dans le repère $\left(O,\vec{u},\vec{v}\right)$ le point A_0 et construire les points A_1 , A_2 , A_3 , A_4 , A_5 et A_6 .

Bonne chance

