Série d'exercices (Vecteurs – équations et inéquations du 1^{er}et du 2^{ème}degré) 2^{ème}sc

Exercice n°1|) 1) Résoudre dans IR les inéquations suivantes :

a)
$$2x^2 + x - 3 \le 0$$
 b) $|x^2 - x + 2| \ge |3x^2 + 2x + 2|$

$$c)\sqrt{x^2 + x - 3} \le 1 - x$$
.

II)On donne A(x)= $2x^2+5x+3$ et B(x)= x^4-3x^2+2

1)a)Résoudre dans IR les équations A(x)=0 et B(x)=0

b)Factoriser A(x) et B(x)

2)Soit f(x)=
$$\frac{B(x)}{A(x)}$$

a)Déterminer l'ensemble des réels x pour lesquels f(x) est définie.

b)Simplifier f(x)

c)Résoudre dans IR l'inéquation f(x)≥0

3)Soit h(x)=
$$\sqrt{f(x)}$$

a)Déterminer l'ensemble des réels x pour lesquels h(x) est définie.

b)Résoudre dans IR l'équation $h(x) = \sqrt{x-1}$

Exercice n°2Soit (E) : $x^2+2x-8=0$

1)Vérifier que 2 est une solution de (E)

2)En déduire l'autre solution de (E)

Exercice n°3Soit ($0;\vec{j}$) un repère orthonormée du plan .On donne les points A(-1,2) ,B(0,3) et C(1,2).

1)Montrer que A,B et C ne sont pas alignés

2)a)Montrer que le triangle ABC est rectangle et isocèle en B.

b)Calculer l'aire du triangle ABC.

3)Soit α un réel et D(α^2 , $2+2\alpha$) un point du plan.

a)Déterminer la valeur de α pour laquelle les vecteurs \overrightarrow{AB} et \overrightarrow{AD} sont colinéaires.

b)On prend α =2. Déterminer les composantes du vecteur \vec{i} dans la base $(\overrightarrow{AB}, \overrightarrow{AD})$

