Lycée Pílote de Tunis

Série d'exercices fonctions N 2

2° année sciences

Exercice 1:

Soient les fonctions $f: \mathbb{R} \to \mathbb{R}$

et
$$g: \mathbb{R} \to \mathbb{R}$$

$$x \mapsto \frac{-2}{\sqrt{1-|x|}}$$
 $x \mapsto \frac{3x}{\sqrt{1-x^2}}$

$$x \mapsto \frac{3x}{\sqrt{1-x^2}}$$

1/ Déterminer l'ensemble de définition de f et g.

2/ Etudier les variations de f sur chacun des intervalles]-1,0] et $[0,1[\ .$

3/ Etudier la parité des fonctions f et g.

4/ En déduire la parité de la fonction $f \times g$.

Exercice 2:

Soit la fonction $f: \mathbb{R} \rightarrow \mathbb{R}$

$$x \mapsto \frac{1}{2} x^2$$

J,1[. 1/ Etudier f et tracer sa courbe représentative \mathcal{C}_f dans un repère orthonormé $(O, \vec{1}, \vec{j})$.

2/ Déterminer les coordonnées des points d'intersection de \mathscr{C}_f et l droite Δ d'équation $y = 2x - \frac{3}{2}$

3/ Résoudre graphiquement l'inéquation x^2 – 4x + 3 > 0

Exercice 3:

Soit la fonction $f: \mathbb{R} \to \mathbb{R}$

$$x \mapsto \frac{1}{4} x^2 - 1$$

1/ Etudier f et tracer sa courbe représentative \mathcal{C}_f dans un repère orthonormé $(O, \overrightarrow{1}, \overrightarrow{j})$.

2/ Déduire la courbe C_g de la fonction g définie $\sup \mathbb{R} \operatorname{par} : g(x) = \left| \frac{1}{4} x^2 - 1 \right|$

et dresser son tableau de variation.

3/ Déterminer graphiquement et suivant les valeurs du paramètre réel m le nombre de solutions de l'équation : $|4-x^2| = m$.

Exercice 4:

Soient les fonctions $f: x \mapsto \frac{2}{x+1}$ et $g: x \mapsto \sqrt{(x+4)}$

- 1/ Etudier f et g et tracer leurs courbes \mathcal{C}_f et \mathcal{C}_g dans un repère orthonormé $(O, \overrightarrow{t}, \overrightarrow{\jmath})$.
- 2/ a) Déterminer les coordonnées du point commun A à \mathcal{C}_f et \mathcal{C}_g .
 - b) Résoudre graphiquement $f(x) \leq g(x)$.
- 3/ Soit la fonction $h: x \mapsto \frac{2|x|}{x+1} \frac{2(x)}{x+1}$.
- . que p a) Vérifier que pour tout $x \le 0$ et $x \ne -1$; h(x) = f(x) - 2 et que pour tout $x \ge 0$: h(x) = 2 - f(x).

