Lycée IBN Khaldoun La Skhira

Prof: Saemongi

Devoir de contrôle n°02

3 ème Maths

2014 2015

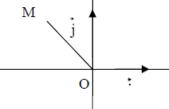
Lundi:16/02/2015

Exercice 1

Pour chacune des questions suivantes une et une seule réponse est exacte. Indiquer le numéro de la question et la lettre qui correspond à la réponse choisie. Aucune justification n'est demandée.

- Pour tout x de IR le réel sin (3π x) est égale à :

- c) sin x
- d) cos x


- 2) Pour tout x de IR le réel $\cos\left(\frac{3\pi}{2} + x\right)$ est égale à :

- 3) Soit x un élément de IR le réel $\sin^2(-2x) + \cos^2(-2x)$ est égale à :

4) Dans la figure ci-contre, (0, i, j) est un repère orthonormé direct

Les coordonnées polaires de M sont :

- a) $\left(\sqrt{2}, \frac{\pi}{4}\right)$ b) $\left(-\sqrt{2}, \frac{\pi}{4}\right)$
- c) $\left(-\sqrt{2}, \frac{3\pi}{4}\right)$ d) $\left(\sqrt{2}, \frac{3\pi}{4}\right)$

- 5) Soit a et b deux éléments de IR. Le réel cos (b a) est égale à :
 - a) cosb cosa
- b) $\sin a \sin b \cos a \cos b$
- c) $\cos a \cos b + \sin a \sin b$

Exercice N°2 (5 points)

Soit f la fonction définie par $f(x) = \frac{x^2 + ax + b}{x(x+2)}$ où a et b sont deux paramètres réels.

Soit (C_f) sa courbe représentative dans un repère orthonormé.

- 1/ Déterminer le domaine de dérivabilité de f puis calculer f'(x) en fonction de a et b.
- 2/ Déterminer a et b sachant que le point A (-1,4) est un extrémum de f.
- 3/ Pour les valeurs de a et b trouvées vérifier que $f'(x) = \frac{6(x+1)}{x^2(x+2)^2}$
 - a/ Dresser alors son tableau de variations.
 - b/ Déduire le signe de f(x) suivant les valeurs de x.

Exercice 3: (6pts)

Soit h une fonction dont le tableau de variatio est le suivant :

x	$-\infty$	0	1	2	$+\infty$
f'(x)	+	0 –		- 0	+
f(x)	-∞	-2 \longrightarrow $-\infty$	+0	× \	$\rightarrow +\infty$

- 1) Déterminer :
 - a) L'ensemble de définition de h et de h'.
 - b) Les limites de h aux bornes de son ensemble de définition.
- 2) On suppose que $h(x) = ax + b + \frac{c}{x-1}$ où a, b et c son des réels
 - a) Calculer h'(x) en fonction de a, b et c.
 - b) En vous aidants des informations contenues dans le tableau ci-dessus, déterminer les réels a, b et c.
 - c) En déduire que la droite D : y = x 1 est une asymptote à la courbe de h au voisinage de $-\infty$ et au voisinage de $+\infty$.
 - d) Etudier les positions relative de (C_h) et D
- 3) Tracer (C_h) et D dans un repère orthonormé (O,\vec{l},\vec{j}) .
- **4)** a) Représenter la fonction $g:x \to h(|x|)$.
 - **b)** Résoudre graphiquement l'équation $\frac{1}{|x|-1} = 3 |x|$.

EXERCICE Nº 4 (4 points)

- 1. Montrer que pour tout réels x: $sin2x 2cos^2x = 2cosx(sinx cosx)$
- 2. Résoudre alors dans l'intervalle [0 ; 2π [l'équation : $\sin 2x 2\cos^2 = 0$
- 3. Résoudre dans l'intervalle [0 ; 2π [l'inéquation : $2\cos x + \sqrt{3} \ge 0$
- 4. Donner alors le signe de : $2\cos x + \sqrt{3} \sin [0; 2\pi[$.