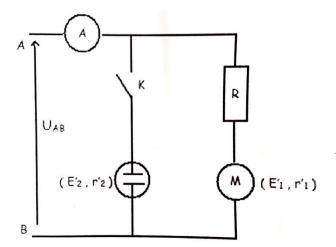
Lycée Secondaire l'Excellence Bizerte 2023/2024

Devoir de Synthèse N° 1 Sciences Physique Niveau 2^{ème} année

Mr. Bayrak-dar Kamel Date : 16/12/2023 Durée : 2H


No	om : Classe : N° :	Cap	Baf
In	dication : Donner les expressions littérales avant toute application numérique.		
On <u>Ex</u> So	HIMIE: (8 PTS) Indonne: e= 1,6. 10 ⁻¹⁹ C; m _{nucléon} = 1,67. 10 ⁻²⁷ kg; ₅ B; ₈ O; ₁₃ Al; ₁₇ Cl; ₆ C; ₁ H et ₇ N exercice 1: (4 pts) Ident deux entités chimiques représentées par X ₁ et X ₂ . La charge électrique du noyau de l'élément X ₂ est Q=20,8. 10 ⁻¹⁹ C L'entité X ₁ appartient à la 3ème période et 3ème groupe du tableau de la classification périodique. Déterminer les numéros atomiques correspondants à ces deux entités chimiques. Conclure.	A_1	1
2)	La masse de chacun de leur noyau est $m=45,09$. $10^{-27}kg$ a- Déterminer le nombre de nucléons dans chacun de ces deux entités chimiques.	A_2	0,5
	b- $\mathbf{X_1}$ et $\mathbf{X_2}$ sont-ils des isotopes. Justifier.	A_2	0,5
3)	La charge électrique du nuage électronique de X_1 est -2,08 . $10^{-18} C$ et celle de X_2 est -1,06 . $10^{-18} C$. a- Ecrire, en le justifiant, la formule électronique de chacune de ces deux entités chimiques	A_1	0,5
	b- Comparer la stabilité des entités X ₁ et X ₂ ? Justifier	A_1	0,5
	c- Donner les symboles de chacune de ces deux entités	A_2	0,5
4)	Identifier, en le justifiant, l'atome \mathbf{Y} se trouvant au-dessus de $\mathbf{X_1}$ dans le tableau de la classification périodique.		
		A_2	0,5

Exercice n°2: (4 pts) 1) Compléter le tableau suivant : 17 Cl **Symbole** ٥F 14Si Groupe A_1 Période 0,75 2) a- Dégager du tableau les éléments chimiques appartenant à la même famille. Donner leurs noms. A_2 0.5 b-Définir la liaison covalente. A_2 0.75 c-Combien de liaison covalentes peut établir chaque atome figurant dans le tableau 0,25 3)a- Donner, en faisant les calculs nécessaires, la représentation de Lewis des Molécules suivantes : Si₂F₆ et Cl₂ A_2 0,5 Le Silicium (Si) peut s'associé avec l'élément Y pour donner une nouvelle molécule. La couche électronique externe de l'atome Y est la couche (M). Elle comporte 6 électrons. 1) Donner, en le justifiant, le numéro atomique de **Y** et l'identifier A_1 2) Quel ion monoatomique cet atome est-il susceptible de donner? Justifier \boldsymbol{c} 0,25 3) Donner la représentation de Lewis et la formule moléculaire du composé Formé par les éléments Silicium et Y en expliquant la nature de la liaison Chimique établie \mathbf{C} 0,5

1,25
2
1,25
1
0,5

Exercice 2 : (6 pts)
On considère la portion de circuit représentée par la figure ci-contre. On applique entre

A et B une tension constante $U_{AB}\text{==}\ 20$ V, R=15 $\Omega\text{.}$

1)	Que	l type d	le géné	érateur	peut-il	l assurer	cette	tensior	ı. Donn	er son s	symbol	le.

2) Lorsque K est ouvert et le moteur bloqué, l'ampèremètre indique une intensité
I_1 = 1 A. Déterminer la résistance interne \mathbf{r} ' du moteur

3)	Lorsque K est ouvert et le moteur tourne librement, l'ampèremètre indique une
	Intensité I_2 = 0,2 A. Déterminer la fcem E_1 ' du moteur

4) Lorsque K est fermé et le moteur tourne librement, l'ampèremètre indique une
Intensité I_3 = 1,2 A. La résistance interne de l'électrolyseur est $\mathbf{r_2}'$ =8 Ω .

a-	Déterminer	l'intensité d	lu courant	qui traverse	le moteur.
----	------------	---------------	------------	--------------	------------

b-	Déduire celle qui traverse l'électrolyseur

C-	Calculer la fcem	E ₂ ' de l'électro	lyseur	

d- Calculer dans ce cas :		
 La puissance chimique développée dans l'électrolyseur 	A_2	0,75
• L'énergie dissipée par effet Joule dans la portion AB pendant Δt= 5 min		
Le rendement énergétique du moteur		
5) On remplace L'électrolyseur par un autre dont les électrodes sont en cuivre et		
Contient une solution de sulfate de cuivre		
a- Qu'appelle-t-on ce type d'électrolyseur ?	В	0,5
b- Justifier ce nom.		
	В	0,5
c- Calculer dans ces conditions l'intensité de courant traversant l'électrolyseur		
et le moteur.		
	$\parallel_{\mathbf{C}}$	a = =
		0,75