Lycée Farhat Hached - El Kef Prof : Galaï Abdelhamid

Devoir de Contrôle N°1 SCIENCES PHYSIQUES

Classe: 2ème Sciences 3 **Durée: 60 Minutes** 2015/2016

Noм:	Prénom:	Numéro:
------	---------	---------

Chimie

Exerc	<u>(ce N° 1 : (4,5 points)</u>	
A- On	considère la liste des atomes suivants : $\frac{19}{9}F$; $\frac{32}{16}S$; $\frac{16}{8}O$; $\frac{33}{16}S$; $\frac{18}{9}F$; $\frac{4}{2}He$; $\frac{1}{1}H$; $\frac{17}{8}O$	
1- a)	Rappeler la définition d'un <u>élément chimique</u> :	
		01
b)	Préciser les éléments chimiques dans cette liste :	
	(0,5
2- a)	Rappeler la définition des <u>Isotopes d'un élément chimique</u> :	
		01
b) P	réciser les isotopes des différents éléments de cette liste :	
	(0,5
	néon Ne est un élément chimique qui se trouve dans la nature sous forme d'un de trois isotopes ²⁰ Ne , ²¹ Ne et ^{A3} Ne de proportions respectives : 90% , 0,3% et	
1- La mas	se des neutrons dans un atome de l'isotope ²¹ Ne est m=18,37.10⁻²⁷ kg . er le nombre de charges Z de Néon. On donne m _{neutron} =1,67.10⁻²⁷kg .	
		0,5
2- La mas l'isotope ^A	se molaire du néon est M=20,197 g.mol⁻¹. Déterminer le nombre de masse A 3 de ³ Ne :	<u>:</u>
		01
		01

Exercice N° 2: (3,5 points)

On admettra que la masse de l'atome d'aluminium $^{27}_{13}\!^{Al}$ est égale à la somme des masses des particules qui le constituent.

- 1) Calculer la masse du noyau d'un atome d'aluminium :
- 2) Calculer la masse du cortège électronique d'un atome d'aluminium? Comparer :

3) Déduire la masse d'un atome d'aluminium :
4) La masse volumique de l'aluminium est $\hat{\rho}=2,7.10^3$ kg.m ⁻³ .
a- Quelle est la masse d'un cube d'aluminium de 2cm de côté? :
b- Combien ce cube contient-il d'atomes d'aluminium? :
<u>Données:</u> masse du proton: $m_p=1,673.10^{-27}kg$; masse du neutron: $m_n=1,675.10^{-27}kg$; masse de l'électron: $m_e=9,109.10^{-31}kg$.
Physique
Exercíce N° 1 : (4 points)
Jn radiateur électrique porte les indications 230 V, 1500 W.
1. Quelle est l'intensité du courant qui le traverse lors d'un fonctionnement normal ?
2. Calculer l'énergie qu'il consomme en 24 heures :
01
3. Calculer son coût en 24 heures de fonctionnement continu si le kWh est facturé 0,173 dinar :
02
Exercíce N° 2 : <u>(8 points)</u>
$f A^-$ La caractéristique intensité d'un dipôle est représentée par la courbe ci-contre (figure 1) $f a^-$ Quelle est la <u>nature</u> et le <u>type</u> de ce dipôle ? Justifier :
01
o- Interpréter la courbe et déterminer la valeur de la grandeur caractérisant le dipôle équivalent :
01
Déterminer la valeur de l'intensité I qui traverse ce dipôle si la tension entre ces bornes U = 4,6 V :
01

Prof: Abdelhamid Galaï

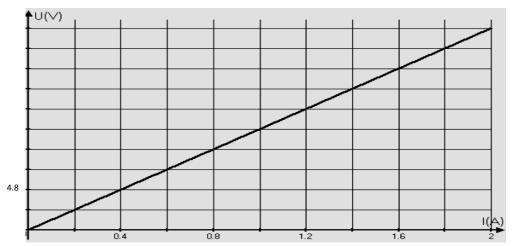


Figure 1

B- On considère le circuit de la <u>figure 2</u>; on donne $R_1=2\Omega$, $R_2=4\Omega$, $R_3=2\Omega$, $R_4=3\Omega$ et $U_{PN}=14,4V$

$U_{PN}=14,4V$ 1- Calculer la résistance R_{eq} du résistor équivalent à l'association R_1 , R_2 , R_3 et R_4 :
1- Calculer la l'esistance Neg du l'esistor equivalent à l'association R ₁ , R ₂ , R ₃ et R ₄ .
02
2- En déduire l'intensité I du courant débité par le générateur :
= =
3- Calculer les tensions U _{PA} , U _{AB} , et U _{BN} :
01
4- Calculer les intensités I_1 et I_2 qui circulent respectivement dans R_3 et R_4 :
01
P
<u> </u>
R ₁
T R3
A - B
Figure 2

 R_4