Lycée secondaire Zaouia, Ksiba, Thrayet

$\underline{Devoir}\ \underline{de}\ \underline{contrôle}\ \underline{N^{\circ}1}$

2^{ème} année Sciences 3

Professeur:

M. Adam Bouali

A B

В

В

В

0,75

Durée: une heure 01 - 11 - 2010

Nom et prénom : N°

CHIMIE: 8 POINTS

EXERCICE N°1:

Compléter le tableau suivant par ce qui convient :

Elément chimique	Aluminium (Al)	Azote (N)	Fluor (F)	Lithium (Li)
\mathbf{A}	27	14		7
Z		7	9	
N	14		10	4
Structure électronique				
Symbole de l'ion correspondant				

L'uranium (U) possède 238 nucléons. La charge de son noyau est $Q = 14,72.10^{-18}$ C.

1) Quel est le nombre d'électrons dans cet atome.	
	1

2) Donner le nombre de neutrons dans l'uranium.

	0,5	Α
3) Donner le symbole du novau d'uranium.		

4) Calculer la masse de l'atome d'uranium.

0,75 B

5) Calculer la masse d'une mole d'atomes d'uranium.

On donne : $e = 1,6.10^{-19} \text{ C}$; $m_{\text{nucl\'eon}} = 1,67.10^{-27} \text{ kg}$; $\mathcal{N} = 6,02.10^{23}$.

PHYSIQUE: 12 POINTS

EXERCICE N°1:

Un circuit électrique comprend en série : un générateur, une lampe, un moteur, un ampèremètre et un voltmètre.

1) Faire le schéma du montage de ce circuit qui permet de mesurer la puissance fournie par le générateur. Expliquer.

	1	A
2) L'aiguille de l'ampèremètre indique la graduation 75 sur l'échelle 100 sachant qu'il est réglé sur le calibre 1 A. Calculer l'intensité du courant qui parcourt le circuit.	0,5	A
3) La puissance fournie par le générateur est 18 W, calculer la tension mesurée entre ses bornes.		
4) Déterminer la tension aux bornes de la lampe sachant que celle aux bornes du moteur est 15 V.	0,75	В
5) Calculer les énergies consommées par les deux récepteurs après un quart d'heure de fonctionnement en J puis en Wh .	0,75	A
	1,5	В
EXERCICE N°2 : Soit le circuit électrique ci contre.		
L'ampèremètre indique $I=0.5$ A. $R_1=10~\Omega$; $R_2=14~\Omega$ et $R_3=8~\Omega$.		
1) Calculer la valeur de la résistance équivalente à l'association des résistors R_1 , R_2 et R_3 .		
A) D(1,5	В
 2) Déterminer la tension U_{AB}. 3) Déterminer les intensités des courants I₁, I₂ et I₃ traversant respectivement les résistors R₁, R₂ et R₃. 	0,5	В
	1,5	С

4)	Calculer la tension aux bornes du résistor R .		
5)	Déduire la valeur de R .	0,5	В
6)	Calculer l'énergie électrique consommée par chaque résistor pendant 5 minutes de fonctionnement.	0,5	A
		2	В
7)	En quelle(s) formes(s) d'énergie(s), cette énergie va être transformée ? Déduire le type de ces dipôles résistors.		
		1	В