Lycée Sèjnene		Génie électrique		Année scolaire : 2010/2011
Section : Science Technique	devo	oir de contrôl	e N°1	Date: 08/11/2010
Nom & Prénom :		N°:	Durée : 2 heures	Classe 3 ^{ème} ST2
<u>Partie 1 : Système de nui</u>	mération			
EXERCICE N°1 : Décoder		vants: (1Pt)		
154 ₍₈₎ =				
2 <i>A</i> 1 ₍₁₆₎ =				
EXERCICE N°2 : Converti	r en binaire pur	le nombre suivar	nt: (0.5Pt)	
28 ₍₁₀₎₌				
EXERCICE N°3 : Transco	der les nombres	binaires : A en oc	tal en Hexadécima	l (1Pt)
A=100101011 ₍₂₎		В	=1011101 ₍₂₎	
	•••••			
Partie 2: Les codes				
	 ner le code BCD	des nombres suiv	vants : (1Pt)	
<u>Partie 2</u> : Les codes EXERCICE N°1 : Déterming 53 ₍₁₀₎	 ner le code BCD		vants : (1Pt) 124 ₍₁₀₎	
EXERCICE N°1 : Détermi	ner le code BCD			
EXERCICE N°1 : Détermine 53 ₍₁₀₎	ner le code BCD			
EXERCICE N°1 : Détermi			124 ₍₁₀₎	
EXERCICE N°1 : Détermine 53 ₍₁₀₎ EXERCICE N°2 :		ombre Binaire Ré	124 ₍₁₀₎	
EXERCICE N°1 : Détermine 53 ₍₁₀₎ EXERCICE N°2 :	aturel (BN) le no	ombre Binaire Ré	124 ₍₁₀₎	

Dossier Pédagogique page 1/4

b) Convertir en Binaire Réfléchi (BR) le nombre Binaire Naturel (BN) suivant : (0	h)	Convertir en	Binaire Réfléchi	(BR) le nombre	Binaire Naturel	(BN) suivant:	(0.5Pt)
---	----	--------------	------------------	----------------	------------------------	---------------	---------

1 1 0 0 :BN

..... :BR

EXERCICE N°3: En utilisant le tableau du code ASCII, compléter le tableau suivant : (2 pts)

caractère	E	e	5	&
équivalant binaire				

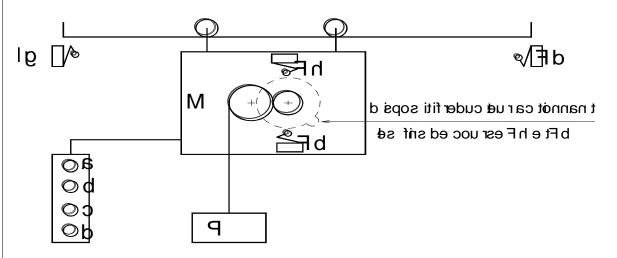
Partie 3: Les Systèmes combinatoires

Problème:

Un pont roulant se déplace entre deux fins de course (figure ci-dessous) :

- > Fg: fin de course gauche,
- > Fd: fin de course droite,

Ces fins de course ont pour but de couper le courant de la bobine de commande du moteur correspondant au sens de déplacement.


La montée et la descente de la charge P sont également limitées par les fins de courses Fh et Fb;

Les commandes des déplacements sont assurées par une boite à quatre boutons.

- ✓ "a" commande le sens D (Droite),
- ✓ "b" commande le sens G (Gauche),
- √ "c" commande la montée Mo (Montée),
- ✓ "d" commande la descente De (Descente);

Les conditions d'exploitation :

- si par erreur l'on actionne simultanément "a" et "b" la priorité est accordée au sens gauche G;
- si par erreur l'on actionne simultanément "c" et "d" la priorité est accordée à la montée de la charge P ;
- si les quatre boutons sont appuyés toutes les commandes sont annulées.

1- Déterminer les variables d'entrée et de sortie :(1Pt)

Variables d'entrée :	 	
Variables de sortie :	 	

Dossier Pédagogique page 2/4

2- Compléter le tableau d'analyse ci-dessus :(2Pts)

a	b	c	d	D	G	Mo↑	De
0	0	0	0		_		•
0	0	0	1				
0	0	1	1	0	0	1	0
0	0	1	0				
0	1	1	0				
0	1	1	1				
0	1	0	1				
0	1	0	0				
1	1	0	0				
1	1	0	1	0	1	0	1
1	1	1	1				
1	1	1	0				
1	0	1	0				
1	0	1	1				
1	0	0	1				
1	0	0	0				

3- Déduire du tableau d'analyse les équations relatives à D, G, Mo, De :(2Pts)

D=	
G=	
Mo=	
De=	
20	
4- Simplifier algébriquement l'équation de D :	(1pt)
5- Vérifier algébriquement que $G = \overline{a}b + b\overline{c} + \overline{c}$	$\mathbf{b}\overline{d}:(1.5\mathrm{pts})$
<u> </u>	

6- Simplifier chacune des équations (D, G, Mo, De) en utilisant le tableau de karnaugh : (4pts) ab ab cd cd D G ab ab cd cd Mo De 7- Etablir le logigramme complet en utilisant des fonctions de bases à deux entrées : (2Pts)

page 4/4

Dossier Pédagogique