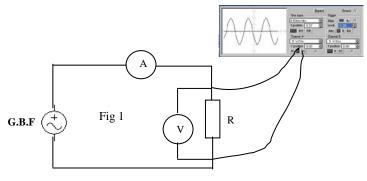
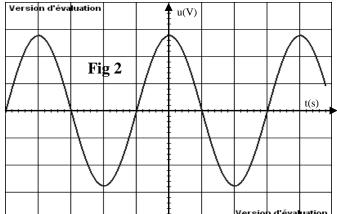
SCIENCES PHYSIQUES


2^{ème} science 3 Série 10

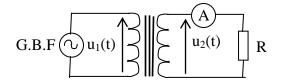

Le courant alternatif

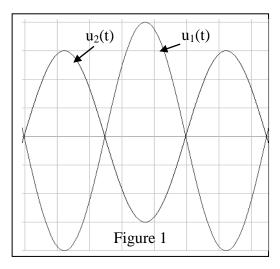
Exercice 1

On a réalise le circuit électrique suivant (figure 1):

- 1- Donner la liste du matériel utilisé.
- 2- La figure 2 donne l'oscillogramme de la tension aux bornes du résistor affiché sur l'écran de l'oscilloscope.
- a- Donner le nom de cette tension.
- b- Définir l'amplitude d'une tension alternative. La calculer
- c- En déduire la tension mesurée par le voltmètre.
- 3- L'ampèremètre indique une intensité I = 200 mA, calculer la résistance du résistor.
- 4- Calculer la période et la fréquence de la tension.

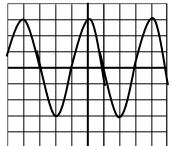
On donne:

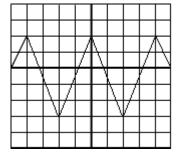

Sensibilité verticale = 2 V.div⁻¹ Sensibilité horizontale = 5 ms.div⁻¹.

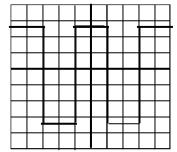

Exercice 2

On considère le circuit électrique suivant :

On applique au primaire du transformateur une tension alternative sinusoïdale $u_1(t)$ délivrée par un générateur basse fréquence (G.B.F). A l'aide d'un oscilloscope, on visualise la tension $u_1(t)$ et la tension $u_2(t)$ aux bornes du secondaire. On obtient le diagramme de la figure 1

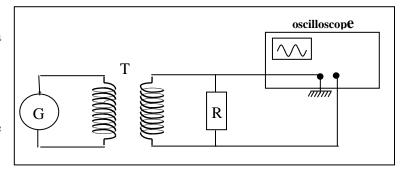

- 1°) a- Déterminer la période T_1 de $u_1(t)$. En déduire celle de $u_2(t)$. **On donne :** la sensibilité horizontale 2 ms/div
 - b- Sachant que la valeur maximale de $u_1(t)$ est $U_{1\text{Max}} = 8 \text{ V}$. Déterminer la sensibilité verticale commune aux deux voix de l'oscilloscope
- c- Montrer que la valeur efficace de la tension $u_2(t)$ est $U_2 = 4,24$ V
 - d- Déduire alors le gain en tension G_{u.}
- 2°) L'ampèremètre indique la valeur 0,17 A.
 - a- Que représente cette valeur. Déterminer la valeur R du résistor
 - b- Montrer que la valeur de puissance $P_2 = 0.72 \text{ W}$
 - c- Le transformateur reçoit au primaire une puissance $P_1 = 0.8 \text{ W}$. Interpréter la diminution de la valeur de la puissance dans le circuit du secondaire
- 3°) On remplace le résistor par un pont à diode.
 - a- Représenter l'allure de u_s(t) à la sortie du pont et préciser sa nature
 - b- Déduire la fréquence de u_s(t)



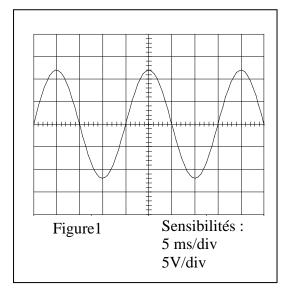


Exercice 3

On considère les trois représentations suivantes. La sensibilité horizontale est 5 ms / div



- 1- L'une de ces tensions n'est pas alternative. Laquelle expliquer
- 2- Comment s'appellent les autres ? Calculer leur période et leur fréquence
- 3- Calculer U efficace U maximale pour la courbe (1) si la sensibilité est 2V / div
- 4- La tension (1) est appliquée à l'entrée A₁B₁ d'un transformateur. La courbe obtenue aux bornes du secondaire possède une valeur maximale $U_{2max} = 2V$.
 - a) Représenter sur la figure (1) la courbe observée si la sensibilité verticale est aussi 2V / div.
 - b) Calculer le rapport de transformation et dite si le transformateur est un abaisseur ou élévateur de tension.
 - c) La tension de sortie est appliquée à l'entrée d'autre transformateur identique au premier. Quelle est la valeur efficace de la tension à la sortie du 2^{ème} transformateur.


Exercice 4

- I) On réalise le circuit représenté par le schéma ci-contre.
- * G: un générateur de tension;
- * T : un transformateur ;
- * R : un résistor de résistance R.

Sur l'écran de l'oscilloscope on observe l'oscillogramme de la figure 1.

- 1°) Préciser le type de cette tension (continue / alternative sinusoïdale)
- 2°) a- Déterminer la valeur de la tension maximale U_m.
 - b- Déduire la valeur de la tension efficace U.
 - c- Déterminer la période de cette tension et déduire sa fréquence.
- 3°) Le générateur G délivre une tension alternative sinusoïdale de valeur maximale $U_{Gm} = 3 \text{ V}$.
 - a- Donner, en justifiant la réponse, la valeur de la fréquence N de la tension u_G du générateur.
 - b- Montrer que le rapport de transformation du transformateur est n = 4.
 - c- Préciser, en justifiant la réponse, le type du transformateur (abaisseur ou élévateur de tension).
- 4°) Le transformateur (T) est formé par deux bobines (B₁) et (B₂) comportant respectivement N₁ et N₂ spires. On dispose de trois enroulements comportant respectivement 200; 100 et 400 spires. Quels enroulements faut-il choisir pour constituer le transformateur T? Préciser celui du primaire et celui du secondaire

