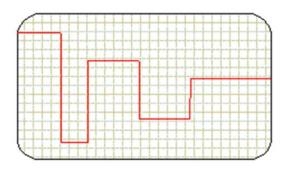
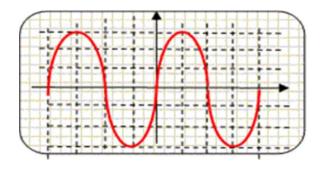
<u>Série n° 9</u>

La tension alternative - Les électrolytes


Exercice n° 1:

Répondre par vrai ou faux et justifier.

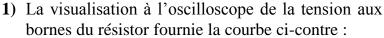
- Une tension alternative peut être positive, négative ou nulle.
- Un oscilloscope mesure des tensions efficaces ; un voltmètre numérique mesure des tensions maximales.
- La relation liant valeur maximale et valeur efficace est : $U_{max} = \sqrt{2} \cdot U_{eff}$.
- L'unité de la tension est le volt, celle de la période la seconde, celle de la fréquence le hertz.


La tension représentée est :

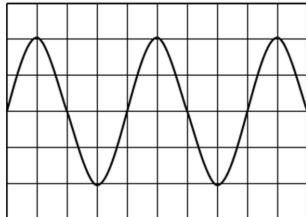
- Une tension variable sinusoïdale.
- Une tension continue.
- Une tension alternative périodique.
- Une tension variable et non périodique.

Sensibilité verticale : 2 V/div. Sensibilité horizontale 10 ms /div.

- La valeur maximale de la tension est $U_{max} = 6 \text{ V}$.
- La période vaut T = 20 ms.
- La fréquence vaut **N** = **0,05 Hz**.



Exercice n° 2:


Un circuit électrique comprend en série : un générateur de tension, un résistor de résistance \mathbf{R} et un oscilloscope branché aux bornes du résistor.

L'oscilloscope est réglé comme suit :

Sensibilité verticale : 5 V/div. Sensibilité horizontale : 10 ms/div.

- a) Quelle est la nature de la tension observée ?
- b) Déterminer la période de cette tension.
- c) Déduire la fréquence de cette tension.
- d) Déterminer la valeur maximale de la tension.

2) On branche un voltmètre aux bornes du résistor. Qu'appelle-t-on la tension mesurée par le voltmètre ? Donner sa valeur.

On donne : $M(N) = 14 \text{ g.mol}^{-1}$; $M(O) = 16 \text{ g.mol}^{-1}$; $M(Na) = 23 \text{ g.mol}^{-1}$; $M(S) = 32 \text{ g.mol}^{-1}$ et $M(Cl) = 35,5 \text{ g.mol}^{-1}$.

Exercice n° 3:

On dissout 11,7 g de chlorure de sodium (NaCl) dans l'eau, on obtient une solution de volume 0,5 L.

- 1) Quelle est la quantité de matière de chlorure de sodium dissoute dans cette solution ?
- 2) Déterminer la molarité de cette solution.
- 3) Ecrire l'équation d'ionisation de chlorure de sodium dans l'eau.
- 4) En déduire la concentration molaire des ions présents dans cette solution.

Exercice n° 4:

- 1) a) Quelle masse m de sulfate de sodium (Na_2SO_4) doit-on dissoudre dans l'eau pour obtenir un volume $V_1 = 300 \text{ cm}^3$ d'une solution (S_1) de concentration molaire $C_1 = 0.5 \text{ mol.L}^{-1}$?
 - b) Ecrire l'équation de la dissociation ionique du sulfate de sodium, dans l'eau.
- c) Déterminer le nombre de moles de chacun des ions présents dans la solution (S_1) . En déduire leurs concentrations molaires.
- 2) Une solution (S_2) est obtenue en faisant dissoudre une masse $m_2 = 34$ g de nitrate de sodium $(NaNO_3)$ dans l'eau. Le volume de la solution (S_2) est $V_2 = 250$ cm³.
 - a) Calculer la concentration molaire C_2 de la solution (S_2) .
 - b) Ecrire l'équation de la dissociation ionique du nitrate de sodium dans l'eau.
- c) Déterminer les concentrations molaires de chacun des ions des ions présents dans la solution (S_2) .
- On mélange les deux solutions (S₁) et (S₂). Calculer la molarité de chacun des ions présents dans le mélange.