Série n° 20

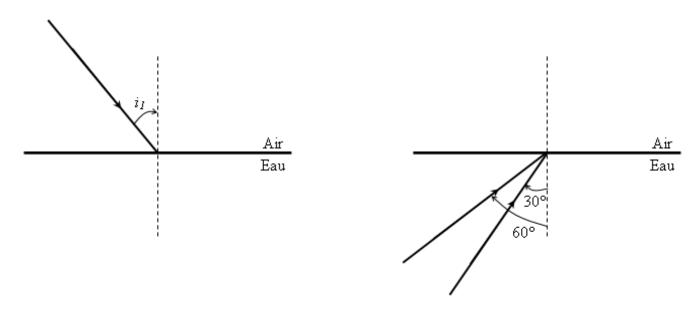
(Les hydrocarbures aliphatiques – La réfraction de la lumière)

Exercice n° 1:

1) Donner la nomenclature des hydrocarbures suivants :

- 2) Un alcène A de masse molaire $M = 70g.mol^{-1}$.
- 3) Quelle est sa formule brute?
- 4) Donner toutes les formules semi développées de A.
- 5) Ecrire les formules semi développées des hydrocarbures suivants :
 - **a.** 3-éthyl, 2,4-diméthylheptane.
 - **b.** Hex-3-ène.
 - c. 2,2,5-triméthylhex-3-yne.

Exercice n° 2:


- 1) Un hydrocarbure aliphatique saturé (A) a une masse molaire moléculaire $M = 58 \text{ g.mol}^{-1}$.
 - **a.** Trouver la formule brute de (**A**).
 - **b.** Ecrire les formules semi développées possibles et donner le nom des différents isomères de (A).
 - c. Identifier l'isomère (A₁) de (A) sachant qu'il présente une chaîne ramifiée.
- 2) L'action du dibrome (Br_2) sur l'hydrocarbure (A_1) en présence de la lumière, donne un mélange de dérivés bromés dont l'un est un dérivé dibromé noté (B).
 - **a.** Ecrire l'équation chimique de la réaction conduisant à la formation de (**B**) en utilisant les formules brutes.
 - **b.** Donner toutes les formules semi développées possibles de (B) et le nom des isomères correspondants.
 - **c.** La structure de l''hydrocarbure de départ (A_1) a-t-elle été modifiée au cours de cette réaction.
- 3) L'un des isomères (B_1) de (B) peut être obtenu par une réaction d'addition du dibrome sur un alcène.
 - a. Trouver la formule brute de cet alcène.
 - **b.** Ecrire la formule semi développée et le nom de cet alcène.
 - c. Ecrire l'équation de la réaction d'addition en utilisant les formules brutes.
 - **d.** La structure de l'hydrocarbure de départ a-t-elle été modifiée au cours de cette réaction ?

Exercice n° 3:

Un rayon lumineux passe de l'air à l'eau sous une incidence $i_1 = 30^\circ$ avec la normale.

- 1) Calculer l'angle de réfraction i_2 .
- 2) Calculer l'angle de réfraction limite λ .
- 3) La source du rayon lumineux est placée maintenant sous l'eau. Expliquer ce qui se passe pour :
 - **a.** Un rayon lumineux envoyé avec une incidence $i_1 = 30^\circ$.
 - **b.** Un rayon lumineux envoyé avec une incidence $i_2 = 60^{\circ}$.

On donne l'indice de réfraction de l'eau par rapport à l'air est n = 1,33.

