Exercice 1

1) Calculer les déterminants des matrices suivantes et préciser si elles sont inversibles :

$$A = \begin{pmatrix} -1 & 3 \\ 5 & 6 \end{pmatrix} , B = \begin{pmatrix} 3 & 9 \\ -5 & -4 \end{pmatrix} , C = \begin{pmatrix} 1 & 1 & 0 \\ 5 & 3 & 5 \\ -2 & -2 & 4 \end{pmatrix} , D = \begin{pmatrix} 2 & 1 & 1 \\ -6 & 2 & -2 \\ 0 & -3 & 7 \end{pmatrix}$$

2) Déterminer la matrice inverse si elle existe : $A = \begin{pmatrix} 1 & 2 \\ -4 & 7 \end{pmatrix}$, $B = \begin{pmatrix} 4 & 6 \\ 2 & 3 \end{pmatrix}$

3) Soit
$$P = \begin{pmatrix} -4 & -4 & 2 \\ 3 & 0 & 1 \\ 2 & 1 & 0 \end{pmatrix}$$

a) Calculer le déterminant de P, en déduire qu'elle est inversible

b) Montrer que
$$P^{-1} = \frac{1}{2} \begin{pmatrix} -1 & 2 & -4 \\ 2 & -4 & 10 \\ 3 & -4 & 12 \end{pmatrix}$$

Exercice 2

Soit g la fonction définie sur IR* par $g(x) = -\frac{1}{x^2}$

1) Etudier la continuité de g sur IR*

Etudier le sens de variation de g sur chacun des intervalles]-∞, 0[et]0, +∞ [

3) Déterminer les images de ces intervalles par g

Exercice 3

Soit f la fonction définie sur IR par $f(x) = x^5 + 3x - 2$

1) Justifier la continuité de f sur IR

2) Montrer que l'équation f(x) = 0 admet une solution unique α appartenant à]0, 1[

3) Vérifier que $\frac{1}{2} < \alpha < \frac{3}{4}$

Exercice 4

Soit f la fonction définie sur IR par $f(x) = x^3 - 3x - 3$

1)a) Etudier le sens de variation de f sur IR.

b) En déduire que l'équation f(x) = 0 admet une solution unique α et que $2,1 \le \alpha \le 2,11$

2) Soit g la fonction définie par
$$g(x) = \frac{2x^3 + 3}{x^2 - 1}$$

a) Déterminer l'ensemble de définition de g

b) Montrer que α est solution de l'équation g(x) - 3x = 0

c) Calculer les limites de g aux bornes de son domaine de définition

Exercice 5

1) Montrer que la fonction $f: x \mapsto \sqrt{x-2} + 1$ détermine une bijection de son ensemble de définition vers un intervalle que l'on déterminera 2) Déterminer l'expression de f⁻¹

3) Tracer C_f et C_{r-1} dans le même repère

Exercice 6

On considère la fonction f définie sur $I = [\frac{1}{4}, +\infty[$ par $f(x) = 2x^2 - x + 1$

1) Montrer que f est une bijection de I sur un intervalle J que l'on précisera

2) Expliciter $f^{-1}(x)$ pour $x \in J$

