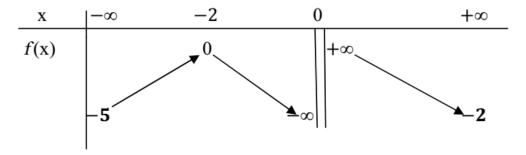
Exercice 1

Soit f la fonction définie sur \mathbb{R} par : $f(x) = x^3 + 3x - 1$

- 1) a) Etudier les variation de f
 - b) En déduire que f réalise une bijection de ℝ sur lui-même
- 2) Montrer que l'équation (E): $x^3 + 3x 1 = 0$ admet une seule solution α dans [0,1] et que $0.3 < \alpha < 0.4$

Exercice 2

Soit la fonction f définie par son tableau de variation suivant :



1) Donner les limites suivantes sans justification

$$\lim_{x\to -\infty} f(x)$$

$$\lim_{x\to 0^+} f(x)$$

$$\lim_{x\to+\infty}f(x)$$

$$\lim_{x \to 0^+} f(x) \qquad \lim_{x \to +\infty} f(x) \qquad \lim_{x \to +\infty} \left(\frac{1}{f(x) + 5}\right)$$

Exercice 3

Soit la fonction f définie sur $[0; +\infty[$ par $f(x) = x + \sqrt{x} - 3]$

- 1) Calculer $\lim_{x \to +\infty} f(x)$, f(1) et f(2)
- 2) Montrer que f est continue sur $[0; +\infty[$
- 3) Montrer que f est croissante sur $[0; +\infty]$
- 4) Montrer que l'équation f(x) = 0 admet une unique solution $\beta \in]1, 2[$
- 5) Montrer que f admet une fonction réciproque f^{-1} .

Exercice 4

Soit $f(x) = x + \sqrt{x^2 - 1}$. On désigne par C_f sa courbe dans un repère orthonormé $(0, \vec{i}, \vec{j})$

- a) Montrer que fest définie sur I=]-∞,-1[∪[1, +∞[.
 - b) Calculer $\lim_{x \to a} f(x)$ et $\lim_{x \to a} f(x)$

- c) Etudier la dérivabilité de f à gauche en -1 et à droite en 1, interpréter graphiquement les résultats obtenus.
- 2) a) Montrer que f'(x) > 0 si x > 0 et f'(x) < 0 si x < 0.
 - b) Dresser le tableau de variation de f
 - c) Montrer que l'équation f(x) = 2 admet sur $[1, +\infty[$ une unique solution α et que $\alpha \in [1, 2]$
- 3) a) Montrer que la restriction g de f sur $[1,+\infty[$ est une bijection. Expliciter $g^{-1}(x)$ pour tout $x \in [1,+\infty[$

Exercice 5

Soit la fonction f définie sur]0, $+\infty$ [par $f(x) = \frac{\sqrt{x} - x\sqrt{x} + 1}{\sqrt{x}}$

- 1) Calculer $\lim_{0^+} f(x)$ et $\lim_{+\infty} f(x)$
- 2) Montrer que $f'(x) = -\frac{1}{2x\sqrt{x}} 1$
- 3) Dresser le tableau de variation de f
- a) Montrer que l'équation f(x)=0 admet une unique solution α ∈]1; 2[
 - b) Montrer que f est une bijection de]0, +∞[sur un intervalle J qu'on précisera.
 - c) Calculer f(4) et $(f^{-1})'\left(-\frac{5}{2}\right)$
- 5) Tracer dans un même repère orthonormé $(0, \vec{i}, \vec{j})$ les courbes de f et de f^{-1}

Exercice 6

Soit f la fonction définie sur $[0, +\infty[$ par : $f(x) = \frac{4-x^2}{x^2+1}$ et soit (C) sa courbe représentative

- 1) Montrer que f est dérivable sur $[0, +\infty[$ et que $f'(x) = \frac{-10x}{(x^2+1)^2}$
- Dresser le tableau de variation de f sur [0 , +∞[et préciser le nombre dérivé de f à droite en 0
- 3) Montrer que f réalise une bijection de [0, +∞[sur]-1, 4]
- 4) Soit g la réciproque de f
 - a) Donner le tableau de variation de g
 - b) Calculer g(0) et g'(0)
 - c) Montrer que g est dérivable sur]-1, 4[on précisera la dérivabilité de g à gauche en 4
 - d) Expliciter g(x) pour $x \in -1$, 4]