Prof : Zaied Ali / Douma Ali

10/11/2022

Devoir de Contrôle N°1 3ème Sciences 1 et 2

Lycée Ghraiba Durée 2 heures

Exercice N° 1 (3 points)

A chacune des questions suivantes , on propose trois réponses dont une seule est correcte . Préciser cette réponse en justifiant votre choix .

- On désigne par : E(x) la partie entière de x . Le domaine de définition de la fonction f définie par : $f(x) = \frac{1}{E(x) 1}$ est :
 - $\langle \mathbf{a} \rangle \mathbb{R} \setminus \{1\}$
 - $\langle \mathbf{b} \rangle]1, +\infty[$
 - $\langle \mathbf{c} \rangle]-\infty, 1[\cup [2, +\infty[.$
- \bigcirc \overrightarrow{u} et \overrightarrow{v} deux vecteurs non nuls tels que : $\overrightarrow{u}^2 = \overrightarrow{v}^2$. Alors :
 - \overrightarrow{u} et \overrightarrow{v} sont colinéaires de sens contraires
 - \overrightarrow{b} \overrightarrow{u} $-\overrightarrow{v}$ et \overrightarrow{u} $+\overrightarrow{v}$ sont orthogonaux.
 - $\overrightarrow{u} \overrightarrow{v}$ et $\overrightarrow{u} + \overrightarrow{v}$ sont colinéaires.
- Soit la fonction g définie par : $g(x) = x^3 + 2\sqrt{x} 1$. Alors l'équation g(x) = 0 admet une solution dans l'intervalle :
 - $\langle \mathbf{a} \rangle [0,1]$

 - $\langle c \rangle]1, 2[$

Exercice N° 2 (4 points)

- 1 Soit la fonction f définie sur \mathbb{R} par : $f(x) = \frac{x^2}{1 + x + x^2}$
 - (a) Montrer que f est minorée par 0 et majorée par $\frac{4}{3}$.
 - **b** 0 est-il un minimum pour f sur \mathbb{R} .
 - \bigcirc $\frac{4}{3}$ est -il un maximum pour f sur \mathbb{R}
- Soit la fonction g définie par $g(x) = \frac{1}{f(x) 2}$.
 - (a) Montrer que g est définie sur \mathbb{R}
 - **b** Montrer que pour tout $x \in \mathbb{R}$ on $a: -\frac{3}{2} \leqslant g(x) \leqslant -\frac{1}{2}$

Exercice N° 3 (7 points)

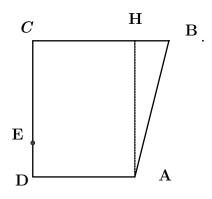
Soit la fonction f définie par : $f(x) = \frac{4\sqrt{x+1} - 8}{x-3}$.

- \bigcirc Déterminer le domaine de définition de f.
 - \bigcirc Étudier la continuité de f sur son domaine de définition .
- On donne dans l'annexe ci-jointe la représentation graphique de la fonction g définie par : $g:x\longmapsto \left\{ \begin{array}{ll} g(x)=f(x) & ; \text{ si }-1\leqslant x<3\\ g(x)=-x^2+6x-10 & ; \text{ si }x\geqslant 3 \end{array} \right.$
 - a Déterminer graphiquement : $g([3, +\infty[) \text{ et } g([-1, 4]).$
 - **b** Répondre par vrai ou faux sans justifier :
 - i) La fonction g est minorée
 - ii) La fonction g est continue à droite en 3.
 - iii) -1 est le maximum de g sur $[3, +\infty[$
- 3 Montrer que g est continue sur chacun des intervalles [-1, 3[et $[3, +\infty[$.
- Tracer dans l'annexe la courbe représentative de la fonction |g|. Justifier graphiquement si la fonction |g| est continue sur $[-1, +\infty[$

Exercice N° 4 (6 points)

Soit ABCD un trapèze rectangle en C et D tel que AD=3 et BC=DC=4 .Soit E un point de [DC] tel que DE=1 et H le projeté orthogonal de A sur (BC).

- - $\begin{array}{c}
 \hline
 \mathbf{b}
 \end{array}$ Montrer que $\overrightarrow{EA}.\overrightarrow{EB} = 9$
 - \bigcirc Calculer : EA et EB .En déduire $\cos \widehat{AEB}$.
- (2) (a) Montrer que : $\overrightarrow{CA}.\overrightarrow{CB} = \overrightarrow{CA}.\overrightarrow{CE} = 12.$
 - $lackbox{b}$ En déduire que les deux droites (AC) et (BE) sont perpendiculaires .
- \bigcirc a Vérifier que le point E est le barycentre du système $\{(C,1);(D,3)\}$.
 - b Déterminer l'ensemble des points M du plan vérifiant $:MC^2 + 3MD^2 = 48$



Nom et prénom	Annexe à rendre avec votre copie	Classe
rom of prenom	••	C1000C
	<u> Devoirat</u>	
	≥ cyon at	