Lycée Fousana	<u>Bevoir de Synthèse nº 1</u> Mathématiques	Niveau: 2 ème Sc 1+2
<u>Date</u> : 30/12/2016	Prof: Maamouri	<u>Durée</u> : 2 heure

EXERCICE 1:(3pts)

Pour chaque question, une seule réponse est correcte. On indiquera sur la copie le numéro de la question et la lettre correspondante à la réponse choisie. Aucune justification n'est demandée.

1) On donne la figure suivante :

Le point C est le barycentre des points pondérés :

- a) (A,3) et (B,4)
- b) (A,4) et (B,3) c) (A,-3) et (B,4).
- 2) Soit G le barycentre des points pondérés (A,1) et (B,2).alors l'ensemble des points M vérifient :

$$\|\overrightarrow{MA} + 2\overrightarrow{MB}\| = 0$$
 est:

a) Le cercle de centre G et de rayon 3	b) la médiatrice de [AB]	c) {G}
3) Soit ABC un triangle et I et J les mili	eux respectifs de [AB] et [AC] et s	soit t la translation de vecteur \overrightarrow{CB} alors

l'image de la droite (IJ) par t est :

a) (BC)	b) La droite passant par A	c) (IJ)
	et parallèle à (IJ)	

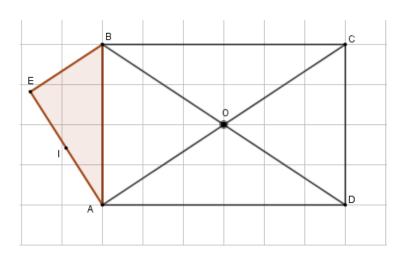
EXERCICE N°2:(8pts)

1) Résoudre
$$x^2 - 10x + 9 = 0$$

2) Soit
$$P(x) = x^4 - 10 x^2 + 9$$

- a) Résoudre P(x) = 0
- b) Factoriser P(x).
- 3) Soit Q(x) = $2 x^3 + 3 x^2 8x + 3$

ightharpoonup Vérifier que Q(x) =($x^2 + 2x - 3$)(2x - 1).


- 4) On donne $f(x) = \frac{P(x)}{Q(x)}$
 - a) Déterminer l'ensemble de définition de \mathcal{D}_f des réels x pour que f(x) soit définie.
 - b) Montrer que pour tout $x \in D_f$; $f(x) = \frac{x^2 2x 3}{2x 1}$
 - c) Résoudre $f(x) \ge 0$.
- 5) a) Résoudre $\sqrt{f(x)} \ge \sqrt{3}$
 - b) En déduire que $\sqrt{\frac{(\sqrt{2}-1)(\sqrt{2}+1)}{2\sqrt{2}-1}} \ge \sqrt{3}$.

EXERCICE N°3: (9pts)

Dans la figure ci-contre on a un rectangle ABCD de centre O, le triangle AEB est rectangle en E et I le milieu du segment [AE].

(BD) et (AE) ne sont pas parallèles

- 1) a) Construire le point G barycentre des points (A, 1) et (O, 2)
 - b) Construire les points F, H et K tel que F = $t_{\overrightarrow{AB}}$ (B), H = $t_{\overrightarrow{AB}}$ (O) et K = $t_{\overrightarrow{AB}}$ (G)
 - c) Montrer que H est le milieu du segment [F C] et que $\overrightarrow{BK} = \frac{2}{3}\overrightarrow{BH}$
- 2) La droite Δ passant par B et parallèle à (AE) et La droite Δ' passant par C et parallèle à (DE) se coupent en E' : ($\Delta \cap \Delta' = E'$).
 - a) Montrer que $t_{\overrightarrow{AB}}$ (AE) = Δ et que $t_{\overrightarrow{AB}}$ (DE) = Δ' .
 - b) Montrer que $\,t_{\overrightarrow{AB}}\left(E\right)=E'\,$. en déduire que (BE)// (FE')
- 3) Soit (\mathcal{C}) le cercle de centre I et passant par A .
 - a) $\underline{\text{D\'eterminer}}$ et $\underline{\text{construire}}$ le cercle (\mathcal{C} ') image de (\mathcal{C}) par la translation $t_{\overrightarrow{AB}}$
 - b) Montrer que le point E' appartient a (C ')
- 4) Soit $f: P \rightarrow P$

$$M \mapsto M'$$
 tel que $\overrightarrow{OM'} = \overrightarrow{MB} - \overrightarrow{MA} + O\overrightarrow{M}$

- a) Montrer que f est une translation du vecteur \overrightarrow{AB} .
- b) en déduire que $f(\mathcal{C})=\mathcal{C}'$

CR Bon travail **EO**

