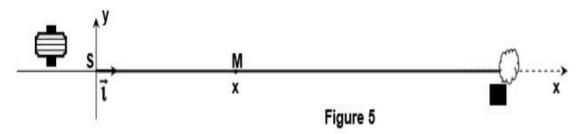
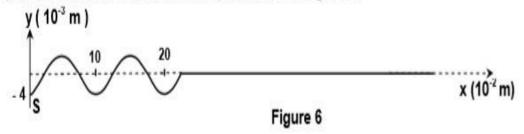
Une corde élastique de longueur L = 0,6 m tendue horizontalement est attachée par son extrémité S au bout d'une lame vibrante qui lui communique des vibrations sinusoïdales transversales, d'amplitude a = 4 mm et de fréquence N (voir figure 5). Une onde progressive transversale de même amplitude a se propage le long de la corde à partir de S avec la célérité v = 10 m.s⁻¹.

On suppose qu'il n'y a ni amortissement ni réflexion des ondes.

Le mouvement de S débute à l'instant t = 0 et admet comme équation horaire : $y_s(t) = 4.10^{-3} \sin(200\pi t + \pi)$.



- Déterminer la valeur de la fréquence N, puis celle de la longueur d'onde λ.
- a) Soit M un point de la corde d'abscisse x = SM dans le repère (S, i).
 Etablir l'équation horaire du mouvement de ce point.
 - b) Montrer que les deux points A et B de la corde d'abscisses respectives x_A = 2,5 cm et x_B = 22,5 cm vibrent en phase.
- 3. L'aspect de la corde à un instant t₁ est représenté sur la figure 6.



- a) Déterminer graphiquement la valeur de t₁.
- b) Déterminer les positions des points N_i de la corde ayant, à l'instant t_1 , l'élongation $y_{N_i} = \frac{a}{2}$.
- c) Parmi ces points, déduire celui qui vibre en phase avec le point N₁ d'abscisse x₁ = 3,33 cm.

Un vibreur provoque à l'extrémité **S** d'une corde élastique un mouvement vibratoire sinusoïdal d'équation: $y_s(t) = a \sin(2\pi N t + \phi)$; **a**, **N** et ϕ désignent respectivement, l'amplitude, la fréquence et la phase initiale de **S**.

La source S débute son mouvement à l'instant de date t₀ = 0s.

On néglige toute atténuation de l'amplitude et toute réflexion de l'onde issue de S.

- 1) a- Qu'appelle-t-on onde?
 - b- L'onde se propageant le long de la corde est-elle transversale ou longitudinale?
- 2) A l'instant t₁ = 2.10⁻²s, le point M₁ de la corde d'abscisse x₁ = 10 cm entre en vibration. Montrer que la célérité de l'onde le long de la corde est v = 5 m.s⁻¹.
- 3) La courbe représentant l'aspect de la corde à un instant t2 est donnée par la figure3.

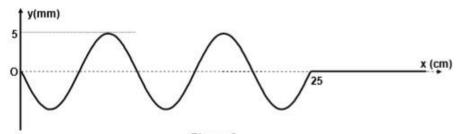


Figure 3

- a- En exploitant cette courbe, déterminer les valeurs de:
 - l'amplitude a,
 - la longueur d'onde λ,
 - l'instant t₂.
- b- Déterminer la valeur de la fréquence N.
- c- Montrer que la phase initiale φ de S est égale à π rad.
- 4) a- Représenter, sur la figure 4 de la feuille annexe (page 5/5), le diagramme du mouvement du point M₁.
 - b- Préciser le signe de la vitesse de ce point à l'instant t2.
 - c- Déterminer, à l'instant t₂, les abscisses des points de la corde ayant la même élongation et la même vitesse que M₁.

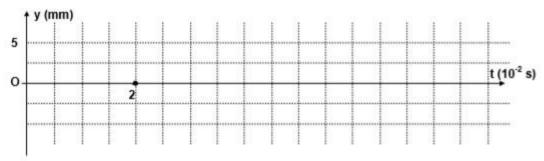


Figure 4

Exercice n°3

Une corde élastique assez longue est tendue horizontalement suivant l'axe (Ox) d'un repère (Oxy). L'extrémité S de cette corde est reliée à un vibreur qui lui impose un mouvement rectiligne sinusoïdal suivant l'axe (Oy) d'équation horaire $y_s(t) = asin(2\pi Nt)$, où a représente l'amplitude du mouvement et N la fréquence de vibration. L'onde créée au point S à l'instant t = 0 s, se propage le long de la corde avec une célérité v constante. On suppose que la propagation de cette onde s'effectue sans amortissement.

Les courbes (1) et (2) de la figure 3 représentent l'aspect de la corde respectivement aux deux instants t_1 et t_2 tels que $t_2 - t_1 = 30 \text{ ms}$.

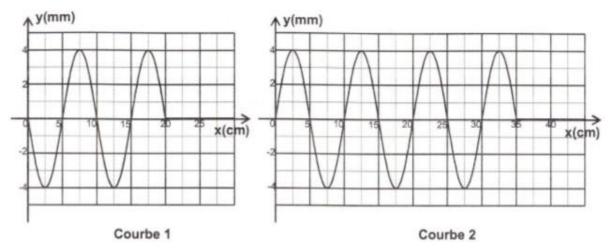


Fig.3

- 1. En exploitant les courbes (1) et (2), déterminer la valeur de :
 - a) la longueur d'onde λ,
 - b) la célérité v de l'onde,
 - c) la fréquence N de vibration.
- 2. On se propose de comparer les vibrations d'un point A d'abscisse $x_A = 17,5$ cm avec celui de S.
 - a) Montrer qu'à l'instant t'1 = 30 ms, le point A est encore au repos.
 - b) Etablir l'équation horaire du mouvement du point A et en déduire le déphasage de celui-ci par rapport à S.
 - c) Tracer le diagramme de y_s(t) et en déduire, dans le même système d'axes, celui de y_A(t).
 - Retrouver graphiquement le déphasage entre A et S.

- 1.a- D'après les courbes on a : λ = 10 cm
 - **b** Pendant la durée $\Delta t = t_2 t_1 = 3.10^{-2}$ s, l'onde a parcouru la distanc

$$\Delta x = x_2 - x_1 = 35 - 20 = 15$$
 cm donc la célérité V est telle que : $V = \frac{\Delta x}{\Delta t} = 5$ m.s⁻¹.

c- On a
$$\lambda = \frac{V}{N}$$
 ainsi $N = \frac{V}{\lambda} = 50 \text{ Hz}$

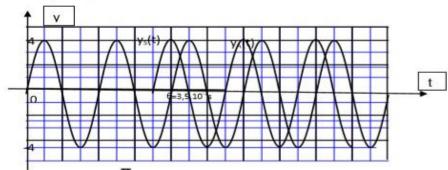
2.a- Pour atteindre le point A d'abscisse $x_A = 17,5$ cm, l'onde met une durée θ_A telle que : $\theta_A = \frac{x_A}{V} = \frac{17,5.10^{-2}}{5} = 3,5.10^{-2} \text{ s} > t_1' = 3.10^{-2} \text{ s}$, ainsi le point A est encore au repos à l'instant t_1' .

b- On a :
$$y_S(t) = a\sin(2\pi Nt)$$
 et $y_A(t) = a\sin(2\pi Nt - \frac{2\pi x_A}{\lambda})$

pour
$$t \ge \theta_A = 3.5.10^{-2} s$$
 ou encore $y_A(t) = 4.10^{-3} sin(100 \pi t + \frac{\pi}{2})$

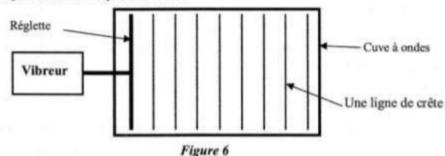
pour
$$t \ge \theta_A = 3, 5.10^{-2} s$$

On a :
$$|\Delta \varphi| = \left| \frac{2\pi x_A}{\lambda} \right| = 3, 5.\pi = 4\pi - \frac{\pi}{2}, \ \phi_A - \phi_S = \frac{\pi}{2} \text{ rad.}$$

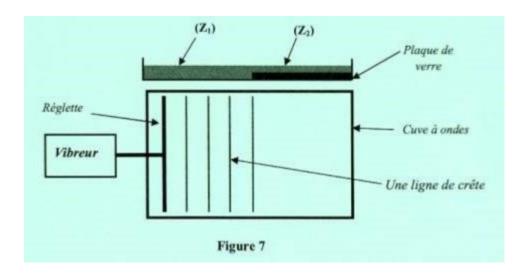


Graphiquement: $\phi_A - \phi_S = \frac{\pi}{2}$ rad.

Un vibreur, relié à une réglette, produit une onde rectiligne, progressive et sinusoïdale, qui se propage sur la surface libre de l'eau d'une cuve à ondes. Pour une fréquence N du vibreur et à un instant t donné, on schématise sur la figure 6 les lignes de crêtes d'amplitude maximale qui se forment à la surface de l'eau.



- 1 a- Décrire l'aspect de la surface libre de l'eau de la cuve à ondes en lumière ordinaire et en lumière stroboscopique pour une fréquence N_e = N.
 - b- Proposer deux méthodes pratiques qui permettent de changer la valeur de la longueur d'onde λ de l'onde qui se propage à la surface de l'eau.
- 2- Pour une fréquence N₁ du vibreur égale à 11 Hz, la distance qui sépare la première ligne de crête d'amplitude maximale de la sixième ligne de crête de même nature est : 70 mm.
 - a- Déterminer la longueur d'onde λ_l de l'onde qui se propage à la surface de l'eau.
 - b- En déduire la célérité v1 de l'onde.
- 3- Pour une fréquence $N_2 = 17$ Hz, la distance qui sépare les deux lignes, successives, de crête d'amplitude maximale est égale à 9 mm. Calculer la nouvelle célérité \mathbf{v}_2 de l'onde.
- 4- Justifier que l'eau est un milieu dispersif.
- 5- On place dans la cuve à ondes une plaque de verre, de façon à délimiter deux zones (Z₁) et (Z₂) où les hauteurs de l'eau sont différentes, comme le montre la figure 7 de la page 6/6.
 Pour la fréquence N₂ du vibreur, la célérité de l'onde incidente qui se propage dans la zone (Z₂) est v'₂ = 0,12 m.s⁻¹.
 - a- Comparer la valeur de la longueur d'onde λ₂ de l'onde incidente avec celle de l'onde transmise λ²₂.
 - b- Justifier que les résultats d'une telle expérience ne permettent pas de confirmer que l'eau est un milieu dispersif.



Q	Corrigé	Barème	
l-a	En lumière ordinaire, on observe des rides rectilignes qui se propagent en s'éloignant de la réglette. En lumière stroboscopique et pour Ne=N, on observe des rides immobiles (immobilité apparente).		
1-b	Première méthode : variation de la fréquence de l'onde. Deuxième méthode : modification de la profondeur de l'eau dans la cuve à ondes.		
2-a	$d=5\lambda_1 = 70 \text{mm}$; $\lambda_1 = 14 \text{mm}$.		
2-b	$V_1 = N_1 \lambda_1 = 0.154 \text{m.s}^{-1}$		
3-	$V_2 = N_2 \lambda_2 = 0.153 \text{m.s}^{-1}$.		
4-	Le milieu étant dispersif car la vitesse v dépend de la fréquence N.		
5-a	λ_2 '= 7,05mm ; λ_2 ' est inférieure à λ_2 .		
5-b	Changement de la nature du milieu de propagation ; l'expérience ne permet pas de justifier que l'eau est un milieu dispersif	0,75	

Exercice n°5

On dispose d'un vibreur muni d'une fourche à pointe unique et d'une cuve à ondes. Au repos, la pointe verticale affleure la surface libre de la nappe d'eau de la cuve à ondes en un point S. En mettant le vibreur en marche, la pointe impose au point S des vibrations sinusoïdales verticales d'amplitude a=2 mm et de fréquence $N_1=40$ Hz. Ainsi, une onde progressive prend naissance à l'instant t=0 et se propage à la surface de l'eau avec une célérité v_1 . On suppose qu'il n'y a ni réflexion ni amortissement de l'onde au cours de la propagation. La figure 3 représente, à un instant t_1 , une coupe de la surface de l'eau par un plan vertical passant par S, où est indiquée la position d'un point S de la surface libre de l'eau. A cet instant, l'élongation de S est nulle. Les points S et S sont distants de S est S et S et S et S sont distants de S est S et S et

figure 3

- 1- a- Déterminer la valeur de la longueur d'onde λ₁.
 - b- En déduire la valeur de v1.
 - e- Déterminer la valeur de t1.
- 2- a- Montrer qu'à l'instant $t_2 = \frac{9}{160}$ s, le point A se trouve au sommet d'une crête.
 - b- Représenter le diagramme du mouvement du point A dans l'intervalle de temps [0, t2].
 - c- Déterminer la phase initiale φ_S du mouvement de la source S.
- 3- On règle la fréquence à une valeur N₂. L'onde progressive se propage à la surface de l'eau à la célérité v₂. La figure 4 représente, au même instant t₁, une coupe de la surface de l'eau par un plan vertical passant par S.

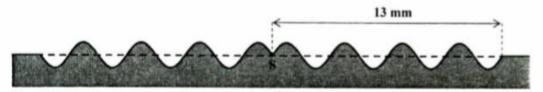


figure 4

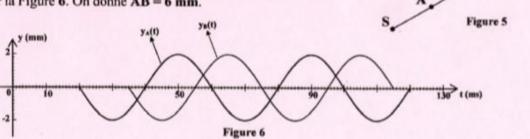
- a- Déterminer les valeurs de la longueur d'onde λ2, de la célérité v2 et de la fréquence N2.
- b- Déduire que l'eau est un milieu dispersif.

- 1) a- Une onde est le phénomène.....dans un milieu donné.
 - b- Onde le long d'une corde, onde à la surface de l'eau ou onde sonore
 - c- L'onde est transversale : « si une petite vague........... le repose »
- 2) L'onde n'est pas accompagnée de déplacement de matière, c'est juste de l'énergie qui se propage.
- Les ondes jouent de ce fait un grand rôle pour nos sens, car l'énergie qu'elle transporte, c'est aussi de l'information pour nous.
 - -Nos yeux et nos oreilles sont la pour capter ce que la lumière ou le son qui sont des ondes nous transmettent.

Un vibreur, muni d'une pointe fine, provoque des vibrations sinusoïdales verticales d'amplitude a et de fréquence N en un point S de la surface d'une nappe d'eau initialement au repos contenue dans une cuve à ondes. Les bords de la cuve sont tapissés avec de la mousse. Des ondes entretenues de forme circulaire se propagent à la surface de l'eau avec la célérité v. On néglige l'amortissement des ondes.

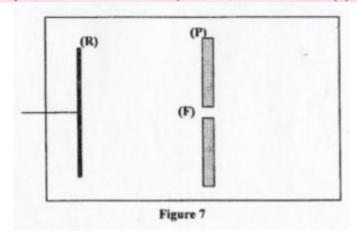
A l'instant t = 0, le point S débute son mouvement en partant de l'état de repos.

- 1- a) Indiquer pourquoi les bords de la cuve à ondes sont tapissés avec de la mousse.
 - b) Préciser, en le justifiant, si l'onde à la surface de l'eau est transversale ou longitudinale.
- 2- On considère deux points A et B de la surface de l'eau, situés sur un même rayon Sx, comme l'indique la Figure 5.
 Les courbes d'évolution au cours du temps des élongations y_A(t) et y_B(t) respectivement des points A et B sont données par la Figure 6. On donne AB = 6 mm.



B.

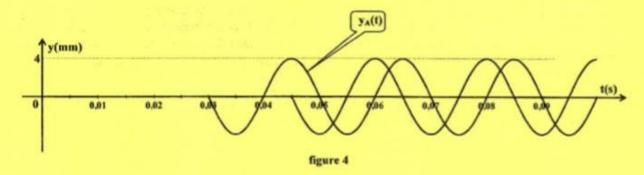
- a) En exploitant la Figure 6, déterminer:
 - la fréquence N;
 - la durée Δt qui sépare les dates de passage de l'onde par les deux points A et B.
- b) Calculer la célérité v de l'onde à la surface de l'eau. En déduire la longueur d'onde λ.
- 3- On remplace la pointe précédente par une réglette (R). Parallèlement à (R) et à une certaine distance, on place un obstacle (P) présentant une fente (F) dont la largeur L est du même ordre de grandeur que la longueur d'onde λ, comme le montre la Figure 7 de la page 5/5.
 - On éclaire la surface de l'eau à l'aide d'un stroboscope de fréquence N. = N.
 - a) Nommer le phénomène qui a lieu au niveau de la fente (F).
 - b) Compléter la Figure 7 de la page 5/5, à remplir par le candidat et à remettre avec sa copie, en schématisant l'aspect de la surface de l'eau de part et d'autre de l'obstacle (P).



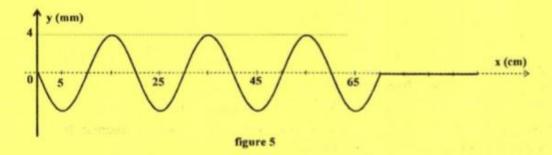
Une corde élastique de longueur L = 90 cm, tendue horizontalement, est attachée par son extrémité S au bout d'une lame vibrante qui lui communique, à l'instant t = 0, des vibrations verticales sinusoïdales d'équation : $y_S(t) = a \sin(2\pi Nt + \phi)$; où a, N et ϕ désignent respectivement l'amplitude, la fréquence et la phase initiale de S.

On suppose qu'il n'y a ni amortissement, ni réflexion de l'onde issue de S.

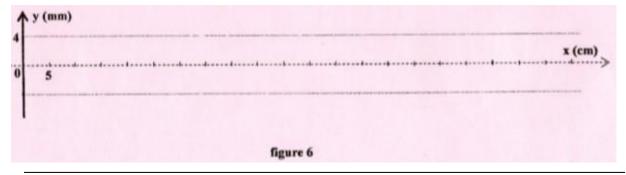
- 1- a- Donner la définition d'une onde mécanique.
 - b- Préciser, en le justifiant, la nature (transversale ou longitudinale) de l'onde issue de S et se propageant le long de la corde.
- 2- Les courbes de la figure 4 représentent les diagrammes de mouvement de deux points A et B de la corde distants, lorsque la corde est au repos, de : d = AB = 0,15 m.



- a- Déterminer les valeurs de l'amplitude a et de la fréquence N de l'onde issue de S.
- b- Montrer que la longueur d'onde $\lambda = \frac{4d}{3}$. Calculer sa valeur.
- c- Déterminer la valeur de la phase initiale φ de S.
- d- Comparer les mouvements des points A et B.
- e- Préciser la valeur de l'élongation du point A et le signe de sa vitesse à l'instant t₁ = 70 ms.
- 3- L'aspect de la corde à l'instant t₁ = 70 ms est représenté sur la figure 5.



- a- Déterminer à l'instant t₁, les abscisses des points de la corde ayant la même élongation que le point A et une vitesse positive.
- b- Représenter, sur la figure 6 de la page 5/5, l'aspect de la corde à l'instant $t_2 = 85$ ms.



Ilyes ben jamaa 7 97274010

On dispose d'un vibreur muni d'une fourche à pointe unique et d'une cuve à ondes. Au repos, la pointe verticale affleure la surface libre de la nappe d'eau de la cuve à ondes en un point S. En mettant le vibreur en marche, la pointe impose au point S des vibrations sinusoïdales verticales d'amplitude a=2 mm et de fréquence N. Ainsi, une onde progressive, de longueur d'onde λ , prend naissance au point S à l'instant t=0 et se propage à la surface de l'eau avec une célérité v constante. On suppose qu'il n'y a ni réflexion ni atténuation de l'onde au cours de la propagation.

- 1) Décrire l'aspect de la surface libre de l'eau observée en lumière ordinaire.
- 2) La figure 6 représente, à un instant t₀, une coupe de la surface de l'eau par un plan vertical passant par S, M₁ et M₂. Les points M₁ et M₂ sont séparés par la distance d = M₁M₂ = 1,25 cm lorsque le liquide est au repos. Le point M₁ est atteint par l'onde issue de S à l'instant t₁ = 5.10⁻² s.

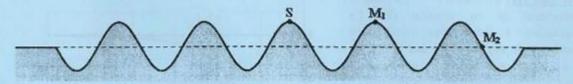


Figure 6

- a- En exploitant la figure 6, déterminer :
 - la longueur d'onde λ:
 - la célérité v ;
 - l'instant to.
- b- Montrer que le mouvement du point S est régi par l'équation horaire :

$$y_s(t) = 2.10^{-3} \sin(40\pi t + \pi)$$
 pour $t \ge 0$; où y_s s'exprime en mêtre et t en seconde.

- 3) a- Etablir l'équation horaire du mouvement du point M2.
 - b- Représenter, sur un même système d'axes, les diagrammes de mouvements des points S et M₂. Comparer le mouvement du point M₂ à celui de S.
 - c- Déduire, à partir de la figure 6, les lieux géométriques des points vibrants en quadrature retard de phase avec S à l'instant t₆.

Correction

1- En lumière ordinaire, on observe des rides circulaires concentriques au point S.

2- a- d =
$$1,25\lambda \Rightarrow \lambda = 1$$
 cm

$$v = {SM_1 \over t_1} = 0, 2 \text{ m.s}^{-1}$$

 $t_0 = {x_r \over v} = 13,75.10^{-2} \text{ s}$

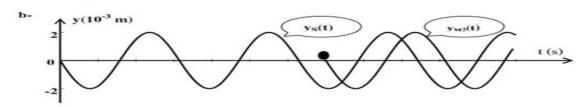
b- $y_S(t) = a\sin(2\pi Nt + \phi_S)$

$$y_s(t) = 2.10^{-3}\sin(40\pi t + \pi)$$
 pour t ≥ 0

3- a-

$$y_{M2}(t) = y_{S}(t \cdot \bullet) ; \bullet = \frac{SM_{2}}{v}$$

$$y_{M2}(t) = \begin{cases} 0 \text{ si } t < \bullet \\ 2.10^{3} \sin(40\pi t + \frac{\pi}{2}) \text{ pour } t \ge \bullet \end{cases}$$



M2 vibre en quadrature retard de phase par rapport à S.

c- Les points sont situés sur des cercles concentriques en S et de rayons :

$$r_1 = 0.25 \text{ cm}$$

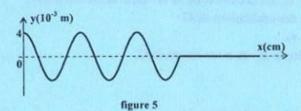
 $r_2 = 1.25 \text{ cm}$

$$r_3 = 2,25 \text{ cm}$$

Une corde souple et très longue, tendue horizontalement, est attachée par l'une de ses extrémités S à une lame vibrante qui lui communique, à partir de l'instant t=0, des vibrations verticales sinusoïdales d'équation: $y_s(t) = 4.10^{-3} \sin\left(100\pi t + \phi_s\right)$; l'élongation y est exprimée en (m) et le temps t en (s).

On néglige tout amortissement et toute réflexion de l'onde issue de S.

L'aspect de la corde à un instant de date t₁ est donné par la courbe de la figure 5.



- 1- a- Définir la longueur d'onde λ.
 - b- Montrer que $t_1 = 5.5.10^{-2}$ s.
- 2- Sachant que la distance parcourue par l'onde à l'instant de date t₁ est égale à 66 cm, déterminer la valeur de λ ainsi que celle de la célérité v de l'onde.
- 3- Préciser la valeur de l'élongation de S à l'instant de date t₁. En déduire celle de sa phase initiale φ_s.
- 4- Soit A le point de la corde le plus proche de S et vibrant en opposition de phase avec S.
 - a- Déterminer l'abscisse xA = SA du point A.
 - b- Représenter le diagramme du mouvement du point A.

Exercice n°10

Une pointe S, attachée à un vibreur, affleure la surface d'une nappe d'eau de profondeur constante, initialement au repos et contenue dans une cuve à ondes rectangulaire et horizontale. Cette pointe produit des vibrations sinusoïdales verticales d'amplitude a et de fréquence N. Des ondes de forme circulaire se propagent alors à la surface de l'eau à partir de S avec une célérité v.

Les bords de la cuve à ondes sont conçus de telle sorte qu'ils absorbent l'onde progressive issue de S. On néglige tout amortissement des ondes.

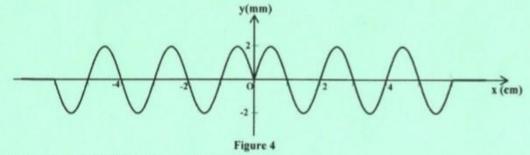
La pointe S débute son mouvement à l'origine des temps t = 0 à partir de sa position d'équilibre.

- 1) a- Dire pourquoi l'onde créée à la surface de l'eau est qualifiée d'onde mécanique.
 - b- Justifier que cette onde est transversale.
 - c- Bien que l'amortissement soit négligeable, on constate que l'amplitude de l'onde à la surface de l'eau diminue en s'éloignant de S.

Nommer le phénomène responsable de cette diminution.

2) Dans ce qui suit, on supposera que l'amplitude a de l'onde en tout point de la surface de la nappe d'eau est la même que celle du mouvement de la pointe S.

Le graphe de la figure 4 représente, à un instant $t_1=0.15~s$, une coupe de la surface de la nappe d'eau par un plan vertical passant par S. A cet instant, l'élongation de la pointe S est nulle.



En exploitant le graphe de la figure 4, déterminer:

- a- l'amplitude a et la longueur d'onde λ à la surface de la nappe d'eau ;
- b- la célérité v et la fréquence N.

3) On remplace maintenant la pointe par une réglette (R) verticale, placée parallèlement à l'un des bords de la cuve, et dont le bord inférieur affleure la surface de l'eau. Sur le fond de la cuve et du côté opposé à (R), on pose à plat, une plaque (P) en plexiglas de forme rectangulaire, d'épaisseur faible et constante. Cela permet de diminuer localement la profondeur de l'eau. La cuve est ainsi partagée en deux zones (1) et (2) de profondeurs différentes, qui constituent deux milieux de propagation différents pour les ondes à la surface de la nappe d'eau. La surface de séparation des deux zones est parallèle à la réglette (R), comme le montre la figure 5.

On néglige tout phénomène de réflexion des ondes.

On actionne le vibreur à la fréquence N = 20 Hz. Des ondes de forme rectiligne se propagent alors à la surface de la zone (1) et passent vers celle de la zone (2). A l'aide d'un procédé approprié, on mesure à la surface de l'eau, les distances d_1 et d_2 séparant 5 lignes de crête consécutives respectivement dans les zones (1) et (2). On obtient alors: $d_1 = 8.0$ cm et $d_2 = 6.0$ cm.

- a- Déterminer les longueurs d'onde λ_1 et λ_2 respectivement dans les zones (1) et (2).
- b- Déduire les célérités v₁ et v₂ de l'onde respectivement dans les zones (1) et (2). Conclure quant à l'effet de la profondeur sur la célérité de l'onde à la surface de l'eau.
- c- Dire en le justifiant, si l'onde incidente subit un changement de direction de propagation lors de son passage de la zone (1) vers la zone (2).

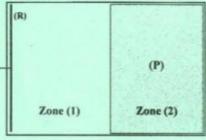
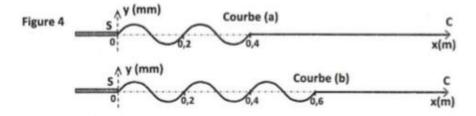


Figure 5

Exercice n°11

Considérons une corde élastique SC de longueur L = SC = 1 m, tendue horizontalement. Son extrémité S est reliée à une lame qui vibre perpendiculairement à la direction SC (Figure 3). Elle est animée d'un mouvement rectiligne sinusoïdal d'amplitude a = 3 mm, de fréquence N et d'élongation instantanée $y_s = 3.10^{-3} sin(2\pi Nt + \phi_s)$ exprimée en m. Le mouvement de S débute à l'instant t = 0. L'autre extrémité C est reliée à un support fixe à travers une pelote de coton qui empêche toute réflexion d'onde. L'amortissement de l'onde, le long de la corde, est supposé négligeable.

Les courbes (a) et (b) de la figure 4 représentent respectivement les aspects de la corde aux instants t_a et t_b tel que $\Delta t = t_b - t_a = 0.02 s$.



- a- Indiquer le rôle de la pelote de coton.
 b- Expliquer pourquoi cette onde est dite transversale.
- 2) a- Déterminer graphiquement la valeur de la longueur d'onde à .

Ilyes ben jamaa 10 97274010

- a- La pelote de coton empêche toute réflexion d'onde.
- **b-** L'onde est dite transversale car la direction des vibrations est perpendiculaire à la direction de sa propagation.

$$a - \lambda = 0.2 \text{ m} = 20 \text{ cm}$$

b-
$$\Delta x = x_{fb} - x_{fa} = v.\Delta t \implies v = \Delta x/\Delta t = 10 \text{ m.s}^{-1}$$

 $N = v/\lambda = 50 \text{ Hz}$

c-
$$x_{fa} = v.t_a \Rightarrow t_a = x_{fa}/v = 0.4/10 = 4.10^{-2} s$$

$$x_{fb} = v.t_b \implies t_b = x_{fb}/v = 0.6/10 = 6.10^{-2} s$$

3- a-
$$y_M(t) = y_S(t - \theta)$$
; $\theta = x/v$ avec { $y_M(t) = 0 \text{ si } t < \theta$ et { $y_M(t) = 3.10^{-3}.\sin(100\pi.t - 10\pi.x + \phi_S) \text{ si } t ≥ \theta$

b- Pour t = ta = 4.10⁻² s; y_M(x) = 3.10⁻³.sin(-10π.x + φ_S)
Or, y_M(x=0) = 0
$$\Rightarrow$$
 sin(φ_S) = 0
De même, $\frac{dy_M}{dx}$)_{x=0} > 0 \Rightarrow cos(φ_S) < 0 \Rightarrow φ_S = π rad

c- L =
$$v.t_f \Rightarrow t_f = L/v = 0.1 s$$

d-
$$x = (4k + 1)\lambda/4 \implies x \in \{5,25,45,65,85\}$$
 en cm; en tout 5 points

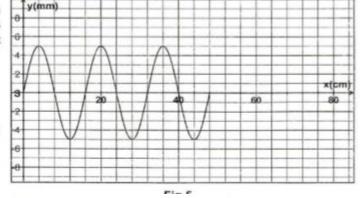
Exercice n°12

Une corde élastique de longueur L = 80 cm est tendue horizontalement. Son extrémité S est liée à une lame vibrante en mouvement sinusoïdal vertical d'équation :

 $y_s(t) = a.sin(\omega t + \varphi_s)$ pour $t \ge 0$. L'autre extrémité est munie d'un dispositif qui empêche la réflexion des ondes.

L'amortissement est supposé nul.

- L'aspect de la corde à un instant t_o donné est représenté dans la figure 5.
 - a) Définir la longueur d'onde λ.
 - b) A l'aide de la figure 5 :



- déterminer l'amplitude de vibration des différents points de la corde atteints par l'onde ainsi que la valeur de la longueur d'onde λ.
- montrer que la phase initiale du mouvement de la source est :

$$\phi_s = \pi \text{ rad}$$

- 2. a) Sachant qu'un point M₁ de la corde d'abscisse x₁ = 24 cm au repos, est atteint par le front d'onde à l'instant t₁ = 12 ms :
 - calculer la célérité de l'onde,
 - en déduire la valeur de la période de vibration de la lame excitatrice.
 - b) Déterminer en fonction de λ, la distance séparant le point M₁ de la source S et en déduire la phase initiale du point M₁.
 - c) Ecrire l'équation horaire du mouvement du point M₁ de la corde.
 - a) Déterminer la valeur de l'instant t_o auquel correspond l'aspect de la corde, représenté dans la figure 5.
 - b) Déduire de l'aspect de la corde à l'instant to, son aspect à l'instant to = 36 ms.

Ilyes ben jamaa 11 97274010

- I-1. a) Définition de la longueur d'onde est la distance parcourue par l'onde pendant une période T
 - b) $a = 5 \, \text{mm}$

$$\lambda = 16 \text{ cm} = 16.10^{-2} \text{ m}$$

- D'après la forme incurvée du front d'onde, on peut affirmer que tout point de la corde élastique d'abscisse x ≤ 3λ commence son mouvement dans le sens négatif. Or, tout point de la corde reproduit le mouvement de (S) avec un retard $\Theta \Rightarrow$ (S) a commencé son mouvement dans le sens négatif $\Rightarrow \varphi_s = \pi \text{ rad}$.
- 2. a) Calcul de la célérité v de l'onde : $x_1 = vt_1 \Rightarrow v = \frac{x_1}{t_1} = 20 \text{ m.s}^{-1}$

$$\lambda = vT \Leftrightarrow T = \frac{\lambda}{v} = 8.10^{-3} s$$

b) $d_1 = x_1 = 1.5 \lambda$

 $x_{M1} = 1.5 \lambda \Rightarrow \text{le point } M_1 \text{ vibre en opposition de phase avec (S) et puisque } \phi_S = \pi \text{ rad} \Rightarrow$

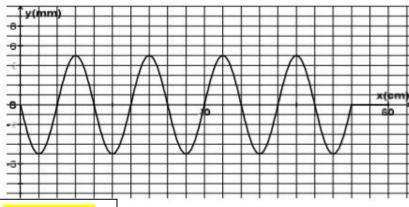
c) Pour $t < t_1 : y_{M1}(t) = 0$

Pour $t \ge t_1 : y_{M1}(t) = 5.10^{-3} \sin 250\pi t$

3. a) $x_{fo} = 3\lambda$. $\Rightarrow t_o = 3T = 24.10^{-3} s$

Autre méthode : $x_{fo} = vt_o \Rightarrow t_o = \frac{x_{f_o}}{v} = 24 \text{ ms}.$

b) $t_2 = 36 \text{ ms} \Rightarrow t_2 - t_0 = 1,5.\text{T} \Rightarrow x_{12} = x_{10} + 1,5 \lambda$, ce qui donne :

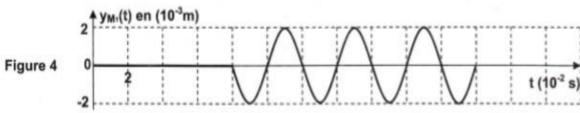


Exercice n°13

En un point S, de la surface d'une nappe d'eau d'une cuve à ondes, une source ponctuelle produit des vibrations sinusoïdales verticales d'amplitude a = 2.10⁻³ m et de fréquence N.

A l'instant t = 0, le point S débute son mouvement en partant de l'état de repos. La sinusoïde du temps traduisant l'évolution de l'élongation d'un point M1 de la surface de l'eau située à la distance x₁ = 4 cm de S, lorsque M₁ et S sont au repos, est donnée par la figure 4.

La réflexion et l'amortissement des ondes sont supposés négligeables.



- 1) a- Déterminer, à partir du graphe, la fréquence N et montrer que la célérité de propagation de l'onde est $v = 0.5 \text{ m.s}^{-1}$.
 - b- Définir la longueur d'onde λ . Calculer sa valeur.

- 2) a- Montrer que les points M1 et S, de la surface de l'eau, vibrent en phase.
 - b- Déduire que l'équation horaire du mouvement de la source S s'écrit :

 $y_s(t) = 2.10^{-3}.\sin(50\pi t + \pi)$, exprimée en m.

- a- Etablir l'équation horaire du mouvement d'un point M de la surface de l'eau situé, au repos, à une distance SM = x de S.
 - b- Représenter une coupe de la surface de l'eau, à l'instant t₀ = 8.10⁻² s, suivant un plan vertical passant par S.
- a- Déterminer les lieux des points, de la surface de l'eau, qui vibrent en opposition de phase avec S à l'instant t₀.
 - b- Préciser, en le justifiant, si les points qui sont en opposition de phase avec S, à l'instant t₀, vont vibrer, juste après t₀, verticalement dans le sens ascendant supposé positif, ou bien dans le sens descendant.

Exercice n°14

Une réglette, fixée à un vibreur, impose à la surface libre de l'eau d'une cuve à ondes des vibrations sinusoïdales verticales d'amplitude a et de fréquence N = 10 Hz. On suppose qu'il n'y a ni réflexion, ni amortissement d'ondes.

A partir d'une date t = 0, des rides rectilignes se propagent à partir d'un point source S de la surface de l'eau, à la célérité v. L'élongation de la source S s'écrit :

$$y_s(t) = a \sin(20\pi t + \phi_s)$$
, $t \ge 0$.

Le graphe de la figure 4 représente une coupe transversale, passant par S, de la surface libre de l'eau à une date t₀.

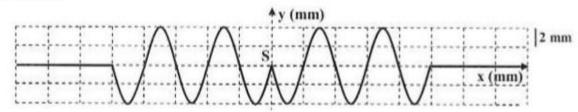


figure 4

 A la date t₀, l'élongation de tout point M de la surface libre de l'eau, situé au repos à la distance SM = x de S, vérifie l'équation :

$$y_M(x) = a \sin(20\pi t_0 + \phi_S - \frac{2\pi x}{\lambda})$$
 tel que $-x_f \le x \le x_f$

où xf représente l'abscisse du front d'onde.

- a- Déterminer la valeur de t₀.
- b- Montrer que $\phi_S = \pi$ rad.
- 2) A la date t_0 , le front d'onde est situé à une distance $x_f = 45$ mm.
 - a- Calculer la valeur de longueur d'onde λ.
 - b- En déduire la valeur de la célérité v de propagation.
- On considère les deux points P et N, de la surface de l'eau, repérés, au repos, respectivement par les abscisses SP = x_P = 18 mm et SN = x_N = 22,5 mm.
 - a- Déterminer le déphasage entre P et N : $\Delta \varphi = \varphi_P \varphi_N$.
 - b- Déterminer les abscisses x_i des points M_i qui vibrent, à la date t₀, en quadrature retard de phase par rapport au point N.

Ilyes ben jamaa 13 97274010

1-a	A partir des relations : $\mathbf{x_f} = 2.5\lambda$; $\mathbf{x_f} = v.t_0$ et $\mathbf{x_f} = \frac{\lambda}{T}.t_0$ on trouve : $t_0 = 2.5T = 0.25s$				
1-b	A la date t_0 , le front d'onde se termine par un creux d'où $\phi_s = \pi$ rad.				
2-a	$x_f = 2.5\lambda = 45 \text{ mm} \Rightarrow \lambda = 18 \text{mm}.$				
2-ь	$\lambda = v.T = \frac{v}{N} \Rightarrow v = \lambda.N = 0.18 \text{m.s}^{-1}$				
3-a	$\Delta \varphi = \varphi_p - \varphi_N = -\frac{2\pi}{\lambda} (x_p - x_N) = \frac{\pi}{2} \text{ rad}$				
3-b-	Abscisses des points P_i , qui vibrant à t_0 , en quadrature de phase par rapport à N . $\Delta \phi = \phi_{pi} - \phi_N = -\pi/2 \text{ rad.}$ En ayant : $x_N = 1,25.\lambda \Rightarrow -\frac{2\pi}{\lambda}(x_{pi} - x_N) = -\frac{\pi}{2} + 2k\pi \Rightarrow x_{pi} = 1,5\lambda - k\lambda$ et que $0 \le 1,5\lambda - k\lambda \le 2,5\lambda$ On déduit que : $\frac{k}{x_{pi}} \frac{1}{\lambda/2} \frac{0}{3\lambda/2} \frac{-1}{5\lambda/2}$ Par symétrie par rapport à l'axe des y , on déduit les x_{pi} d'abscisses négatives $N.B$ Accepter le raisonnement sur le tracé du schéma.				

Exercice n°15

Le bord inférieur d'une réglette verticale affleure au repos la surface libre d'une nappe d'eau d'une cuve à ondes. La réglette est animée d'un mouvement rectiligne sinusoïdal perpendiculaire à la surface de l'eau. Le mouvement est de fréquence N réglable et d'amplitude a. Des rides rectilignes parallèles à la réglette se forment et se propagent perpendiculairement à la réglette à la célérité $v = 0,40 \text{ m.s}^{-1}$. Dans la suite de l'exercice, on néglige tout type d'amortissement. La réglette étant placée à l'extrémité de la cuve à ondes, on suppose que le mouvement de la réglette débute à un instant t = 0, qui sera pris comme origine du temps.

Pour une fréquence N₂, on a représenté sur la figure 5 des crêtes et des creux.

- a- Préciser, en le justifiant, si l'onde considérée est transversale ou longitudinale.
 - b- La distance entre les points A et B qui appartiennent à deux crêtes successives, représente l'une des caractéristiques de l'onde. Nommer cette caractéristique et donner sa définition.

figure 5

Sens de propagation

 La figure 6 donne, à un instant t₁, la coupe transversale de la surface de l'eau par un plan vertical perpendiculaire à la réglette et passant par O.

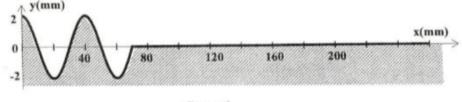


figure 6

- a- Déterminer les valeurs de la longueur d'onde λ, de la fréquence N₂ et de l'instant t₁.
- b-Etablir l'expression de l'élongation $y_0(t)$ du mouvement du point O.
- 3) A partir de N₂, on fait varier la fréquence N jusqu'à atteindre la plus petite fréquence N₃, pour laquelle les points A et B vibrent en opposition de phase. Déterminer la valeur de N₃.

1-a-	L'onde est transversale car la direction de propagation est perpendiculaire au mouvement des points de la surface de l'eau. C'est la longueur d'onde λ. Elle représente la distance parcourue par l'onde pendant une période temporelle.			
1-b-				
2-a-	$\lambda = 4.10^{-2} \text{m}$; $N_2 = v \lambda = 1.0 \text{ Hz}$;	$T_1=7\lambda/4v=7T/4=0,175s$		
2-c-	Détermination de la valeur de la phase initiale $Y_0(t) = 2.10^{-3} \sin (20\pi t + \pi)$ unité S.I			
3-	Pour que A et B vibrent en opposition de phase: $AB = (2k+1) \lambda^3 / 2 = (2k+1) v/2N$ avec k entier naturel. $\Rightarrow N_k = (2k+1) v/(2AB)$; et $AB = 4.10^{-2}$ m Pour $k = 0$, N_3 est la plus petite; $N_3 = N_3/2 = N_3 = 5$ Hz.			

Exercice n°16

En un point O de la surface libre de l'eau d'une cuve à ondes, une source ponctuelle S impose, à partir de t = 0 s, des oscillations sinusoïdales verticales d'amplitude a = 2 mm et de fréquence N = 20 Hz.

Le mouvement du point O obéit à la loi horaire : $y_0(t) = a \sin(2\pi N t + \phi_0)$ pour $t \ge 0 s$; où ϕ_0 est la phase à t = 0 s. On suppose qu'il n'y a ni réflexion ni amortissement de l'onde au cours de la propagation.

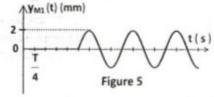
1) Décrire l'aspect de la surface libre de l'eau éclairée en lumière ordinaire.

2) On donne, sur la figure 5, le diagramme du mouvement d'un point M₁ de la surface libre de l'eau situé à la distance 1,25.10⁻²m de O. En exploitant la figure 5 :

 a – déterminer l'équation horaire du mouvement du point M₁ et déduire celle de O;

 b – calculer la valeur de la célérité v de l'onde créée à la surface de l'eau;

c - déduire la valeur de la longueur d'onde λ.



3) A l'instant t₁, l'aspect de la surface libre de l'eau est représenté par la figure 6 ; où les cercles tracés en lignes continues représentent les crêtes et ceux tracés en lignes discontinues représentent les creux.

 $a - Montrer que t_1 = 16,25.10^{-2} s.$

b – En justifiant la réponse, comparer les états vibratoires des points
 M₂ et M₃ de la surface de l'eau.

c – Déterminer les lieux géométriques des points M de la surface libre de l'eau qui vibrent à l'instant t₁ en quadrature avance de phase par rapport au point M₂.

d - Représenter l'ensemble de ces points sur la figure 8 de la page 5/5.

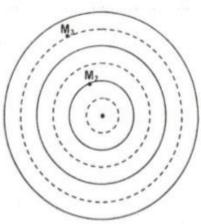


Figure 6

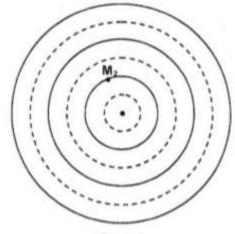


Figure 8

5/5

 Des rides circulaires concentriques qui se propagent à la surface libre de l'eau.

a – Le point M₁ débute son mouvement à l'instant t₁= 51/4;
 Pour t ≤ 51/4; y_{M1}(t) =0.

Pour $t \ge 5T/4$; $y_{MS}(t) = a \sin(2\pi N t - \frac{\pi}{2})$. Avec a = 2mm.

Équation horaire de la source O:

$$y_0(t) = y_M(t + \Delta t); \Delta t = T + \frac{\tau}{4}$$

$$y_0 (t) = a \sin (2 \pi N (t + \Delta t) - \frac{\pi}{2}) = a \sin (2 \pi N t).$$

b-La célérité v de l'onde est $v=\frac{d_1}{\Delta t}=0.2 \text{ m.s}^{-1}$.

$$c - \lambda = \frac{V}{N} = 0.01 \text{ m} = 1 \text{ cm}.$$

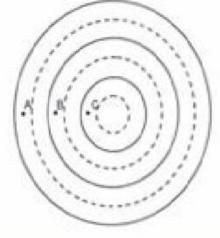
3) $a - \lambda$ l'instant t_x le front d'onde a parcouru la distance $D = 3\lambda + \frac{\lambda}{4}$;

$$t_1 = \frac{D}{\lambda} = \frac{13 \lambda}{4 \lambda} = 16,25.10^{-2} \text{ s}.$$

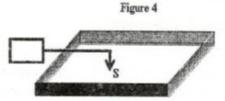
- b M₂ et M₃ vibrent en opposition de phase car M₂ appartient à une crête et M₃ appartient à un creux.
- c Les points M de la surface libre de l'eau qui vibrent à l'instant t_i en quadrature avance de phase par rapport au point M₂ sont des cercles

de centre O de rayons respectifs : $\frac{3\lambda}{4}$, $\frac{7\lambda}{4}$ et $\frac{13\lambda}{4}$.

les lieux des points sont les cercles centrés sur O et passant par les points A,B,et C



On dispose d'un vibreur muni d'une fourche à pointe unique et d'une cuve à ondes. Au repos, la pointe verticale affleure la surface libre de la nappe d'eau de la cuve en un point S. En mettant le vibreur en marche, la pointe impose au point S des vibrations verticales sinusoïdales de fréquence N



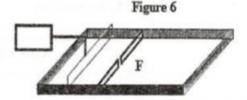
réglable qui se propagent à la célérité v. Les bords de la cuve à ondes sont tapissés de mousse pour éviter toute réflexion des ondes (figure 4). On néglige l'amortissement des ondes et le phénomène de dilution de l'énergie lors de la propagation des ondes. Le mouvement de S est étudié par rapport à un repère fixe (O, \vec{j}) vertical ascendant. A l'instant t = 0, l'origine O coı̈ncide avec le point S au repos. L'élongation y_s de la source S à un instant $t \ge 0$, s'écrit :

 $y_s(t) = 2.10^{-3} \sin(40\pi t + \phi_s)$; avec t exprimé en seconde et y_s en mètre.

- 1- Ecrire l'équation horaire y_M(t) du mouvement d'un point M de la surface de l'eau, situé au repos, à une distance radiale d = SM de la source S.
- 2- La figure 5 de la page 5/5, schématise l'aspect de la surface de l'eau à un instant t = θ à l'échelle 1/2 (2 cm de la surface de l'eau correspondent à 1 cm sur la figure). Les points situés à la distance D = 4,5 cm de S sont atteints par les ébranlements à l'instant t = θ.

Les crêtes sont représentées par des cercles en traits continus, alors que les creux sont représentés par des cercles en pointillés.

- a- Déterminer, à partir de la figure 5, la valeur de la longueur d'onde λ.
- b- Calculer la valeur de la célérité v de l'onde.
- c-Justifier qu'à l'instant $t = \theta$, l'élongation du point S est $y_s = -2 \text{ mm}$.
- d- Déterminer la valeur de θ.
- e- Déterminer la phase initiale φs de ys(t).
- f- Représenter, sans faire de calcul et en le justifiant, à l'échelle 1 (1 cm de la surface de l'eau correspond à 1 cm sur la figure), l'aspect d'une coupe transversale de la surface de l'eau par un plan vertical passant par le point S à l'instant t = θ.
- 3- Dans cette partie, on excite périodiquement la surface de l'eau à l'aide d'une réglette mince. On obtient des ondes rectilignes progressives de célérité v = 0,4 m.s⁻¹ et de fréquence N = 20 Hz. On place un obstacle muni d'une fente F de largeur a₁ = 0,5 cm sur le trajet des ondes (figure 6).



- a- Représenter, sur la figure 7 de la page 5/5 et à l'échelle 1/2, l'aspect de la surface de l'eau au-delà de la fente F en supposant que toute la surface de l'eau est atteinte par l'onde. Justifier.
- b- Justifier que la célérité de l'onde se conserve avant et après la fente F.

Figure 5

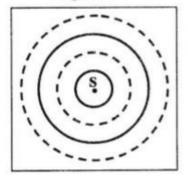
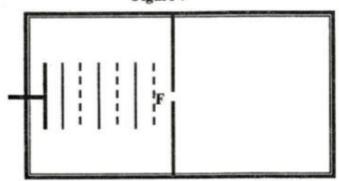


Figure 7



1- L'équation horaire
$$y_M(t) = 0$$
 pour $t < 0$
$$y_M(t) = y_S(t - \theta) = 2.10^{-3} \sin(40\pi t - \frac{40\pi d}{v} + \varphi_x) \text{ pour } t \ge \theta.$$

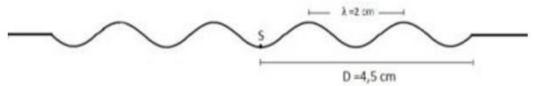
2- a-
$$\lambda$$
 = 2 cm
b-v = $\frac{\lambda}{T}$ = λ N = 0,4 m.s⁻¹.

c- SP = 1 cm = $\frac{\lambda}{2}$; avec P un point appartient à la crête la plus proche de S \Longrightarrow S est un point, d'où

d-
$$\theta = \frac{D}{v} = 112,5 \text{ ms.}$$

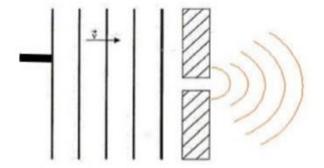
e-
$$y_s(t = \theta) = -2.10^{-3} \sin(\frac{\pi}{2} + \varphi_s) \Longrightarrow \varphi_s = \pi \text{ rad.}$$

f-
$$y_5$$
 (t = θ) = -2.10⁻³ m.
D= 2,25 λ



3-a- a₁< λ ⇒ phénomène de direction

Figure 7

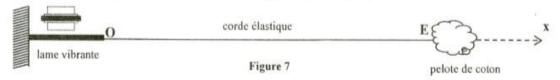


b- Le milieu propagateur de l'onde est la même avant et après l'obstacle : donc la célérité se conserve.

97274010

18

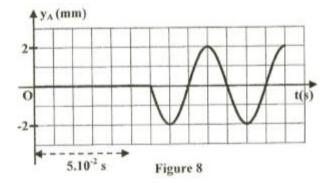
On tend horizontalement une corde élastique souple de longueur L = OE = 1 m et de masse négligeable ; son extrémité O est attachée à une lame vibrante, tandis que l'autre extrémité E est reliée à un support fixe à travers une pelote de coton (Figure 7). La lame vibrante impose au point O un mouvement rectiligne sinusoïdal vertical d'amplitude a = 4 mm et de fréquence N; l'équation horaire du mouvement du point O est : $y_O(t) = a.sin(2\pi Nt + \phi_0)$ pour $t \ge 0$; ϕ_0 étant la phase initiale du mouvement. La corde est alors le siège d'une onde progressive de célérité c. On suppose qu'il n'y a pas d'amortissement des ondes.

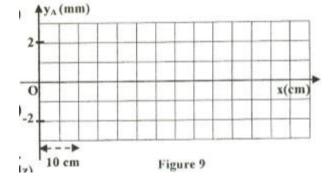


- a- Décrire et interpréter l'aspect de la corde lorsqu'elle est observée en lumière ordinaire.
 - b- Indiquer le rôle de la pelote de coton.
 - c- Préciser, en le justifiant, si l'onde qui se propage le long de la corde est longitudinale ou transversale.

3/5

- 2) La courbe de la figure 8 de la feuille annexe (page 5/5) représente le diagramme de mouvement d'un point A de la corde, situé au repos à une distance x_A = OA = 30 cm de la source O.
 - a- En exploitant la courbe de la figure 8 de la feuille annexe (page 5/5), déterminer la fréquence N de la lame vibrante et l'instant t_A du commencement du mouvement du point A.
 - b- Calculer la célérité c de l'onde et sa longueur d'onde λ.
 - c- Déterminer la phase initiale φ_A de $y_A(t)$ ainsi que φ_0 de $y_O(t)$.
- 3) a- Montrer, qu'à l'instant t₁ = 0,1 s, l'onde n'a pas atteint l'extrémité E de la corde.
 - b- Représenter sur la figure 9 de la feuille annexe (page 5/5 à remettre avec la copie), l'aspect de la corde à l'instant t₁ = 0,1 s.
 - c- Déduire, à l'instant t₁ les positions des points de la corde ayant une élongation nulle et se déplaçant dans le sens des élongations positives.





A un instant pris comme origine des temps, une lame vibrante communique à l'extrémité S d'une corde très souple et infiniment longue, tendue horizontalement, des vibrations verticales sinusoïdales d'équation : $y_s(t) = a \sin(2\pi Nt + \phi_s)$; où a, N et ϕ_s désignent respectivement l'amplitude, la fréquence et la phase initiale de S.

On négligera dans ce qui suit, toute atténuation de l'amplitude et toute réflexion de l'onde issue de S.

On donne les courbes (C1) et (C2) de la figure 5. L'une des deux courbes correspond au diagramme du mouvement d'un point A de la corde, alors que l'autre représente l'aspect de la corde à un instant de date t₁.

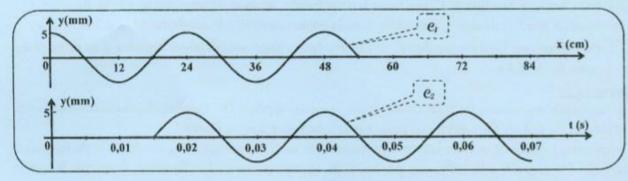


figure 5

- Identifier, parmi (C₁) et (C₂), celle qui correspond au diagramme du mouvement du point A. Justifier.
- 2- a- En exploitant ces deux courbes, déterminer les valeurs de l'amplitude a, de la fréquence N et de la longueur d'onde λ .
 - b- En déduire la valeur de la célérité v de l'onde.
- 3- a- Déterminer l'équation horaire du mouvement du point A.
 - b- En déduire la valeur de φ_s.
 - c- Comparer, pour t ≥ 0,015 s, le mouvement de A par rapport à celui de S.
- 4- Déterminer, pour t = t1, les abscisses des points vibrant en quadrature avance de phase par rapport à S.

Exercice n°20

On dispose d'une cuve à ondes à parois absorbant, contenant un liquide homogène initialement au repos.

I- On laisse tomber en un point de la cuve, une goutte du même liquide.

Un ébranlement est crée et se propage à la surface libre du liquide.

On filme cette surface à l'aide d'une caméra numérique dont la fréquence est réglée à 16 images par seconde.

Le cliché de la figure 7 qui repère deux positions de l'ébranlement, représente les images n°1 et n°5 séparés par une distance d = AB = 5 cm.

Justifier que l'ébranlement produit est progressif.

a- Montrer que l'écart temporel entre la prise des images n°1 et n°5 est Δt = 0,25 s.

b- Déduire la valeur v₁ de la célérité de propagation de l'ébranlement à la surface du liquide.

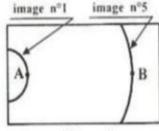


Figure 7

II- On installe, sur la cuve à ondes, un vibreur muni d'une fourche à pointe unique et dont la fréquence est réglée à la valeur N₁ = 5 Hz. Au repos, la pointe affleure verticalement la surface libre du liquide en un point S.

A un instant $t_0 = 0$, une onde progressive sinusoïdale de longueur d'onde λ_1 et d'élongation instantanée $y_S(t) = 4.10^{-3} \sin(2\pi N_1 t + \pi)$, prend naissance et se propage avec la célérité v_2 .

A l'instant $t_1 = 0.8$ s, on règle la fréquence du vibreur à une valeur N_2 tout en gardant la même amplitude. L'onde progressive sinusoïdale se propage toujours à partir de S avec une longueur d'onde λ_2 .

On suppose qu'il n'y a ni réflexion ni amortissement de l'onde au cours de sa propagation.

La figure 8 représente, à un instant $t_2 > t_1$, une coupe de la surface du liquide par un plan vertical passant par S.

20 cm

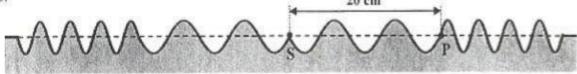
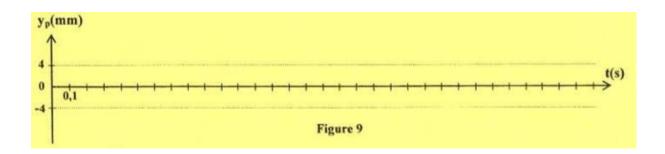
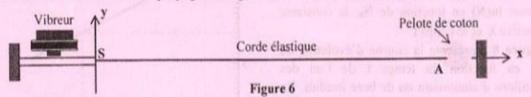


Figure 8

- 1) Justifier que $v_2 = v_1$.
- a- En exploitant la figure 8, déterminer λ₂. Déduire N₂;
 - b- Déterminer t2.
- 3) a- Exprimer $y_P(t)$ pour chacun des intervalles de temps suivants : $[0, t_2]$ et $t \ge t_2$.
 - b- Représenter y_P(t) sur la figure 9 de la page 5/5, à remplir par le candidat et à rendre avec la copie.



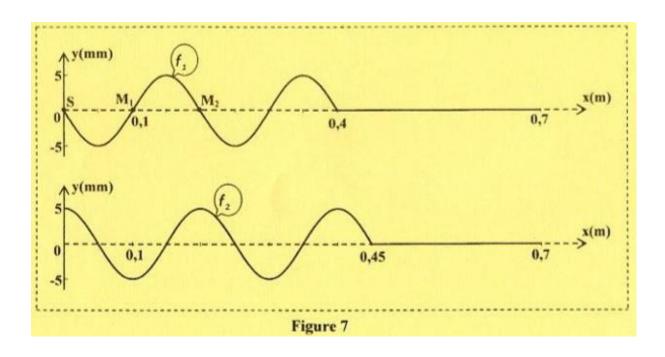
On dispose d'une corde élastique, homogène, tendue horizontalement et de longueur L=70 cm. L'extrémité S de cette corde est attachée à un vibreur qui lui impose des vibrations verticales sinusoïdales d'amplitude a=5 mm et de fréquence N. L'autre extrémité A est reliée à un support fixe à travers une pelote de coton comme l'indique la figure 6. Une onde progressive transversale, de longueur d'onde λ , prend naissance en S à l'instant t=0 et se propage le long de la corde avec une célérité v constante.



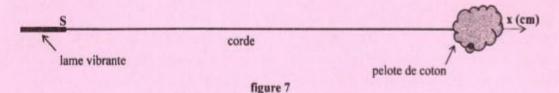
 Reproduire et compléter le tableau ci-dessous en attribuant à chacun des éléments du dispositif le rôle qui lui convient parmi les suivants : milieu de propagation, source d'énergie, absorbant énergétique.

Elément du dispositif	vibreur	Corde tendue	Pelote de coton
Rôle			

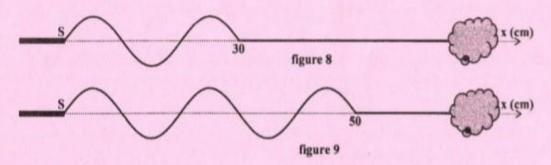
- 2) Les courbes (f₁) et (f₂) de la figure 7 de la page 5/5 (à remplir par le candidat et à remettre avec sa copie), représentent les deux aspects de la corde respectivement aux instants t₁ et t₂ tel que t₂ t₁ = 5.10³ s. La position de chacun des trois points S, M₁ et M₂ de la corde, à l'instant t₁, est indiquée sur la courbe (f₂).
 - a- Indiquer, sur la courbe (f₂) de la figure 7 de la page 5/5, les nouvelles positions des points S, M₁ et M₂ à l'instant t₂.
 - b- Comparer chacun des mouvements des points M1 et M2 à celui de S.
- 3) L'équation horaire du mouvement de S s'écrit : y_S(t) = asin(2πNt + φ_S). En exploitant les courbes de la figure 7 :
 - a- préciser la valeur de λ;
 - b- déterminer la valeur de la célérité v. En déduire la valeur de la fréquence N;
 - c- déterminer la valeur de la phase initiale φs.
- 4) Déduire, à partir de la figure 7, les abscisses des points qui vibrent en phase avec S à l'instant t2.



Une corde élastique, tendue horizontalement, est attachée par l'une de ses extrémités S à une lame vibrante qui lui communique, à partir de l'instant t = 0, des vibrations verticales sinusoïdales d'amplitude a et de fréquence N. L'autre extrémité de la corde est reliée à un support fixe à travers une pelote de coton comme le montre la figure 7.



- 1- Indiquer le rôle de la pelote de coton.
- 2- Choisir, parmi les propositions données ci-dessous, celle(s) qui qualifie(nt) l'onde issue de S et se propageant le long de la corde.
 - mécanique
 longitudinale
 progressive
 sonore
- 3- Observée en lumière ordinaire, la corde parait sous forme d'une bandelette rectangulaire floue de largeur ℓ = 8 mm.
 - a- Déduire que l'onde issue de S se propage le long de la corde sans amortissement.
 - b- Déterminer alors la valeur de a.
- 4- Les figures 8 et 9 correspondent à deux photos de la corde prises à 20 ms l'une de l'autre.



- a- Définir la longueur d'onde λ.
- b- En exploitant les figures 8 et 9, déterminer:
 - b_1 la valeur de λ ;

Ilyes ben jamaa

- b₂- la valeur de N. En déduire celle de la célérité v de l'onde.
- c- Déterminer, à l'instant de date t = 50 ms, les abscisses des points de la corde vibrant en phase avec S.
- 5- On éclaire la corde avec un stroboscope émettant des éclairs de fréquence Ne réglable entre 20 Hz et 100 Hz.
 - Déterminer les valeurs de Ne permettant d'obtenir l'immobilité apparente de la corde.

23

97274010

