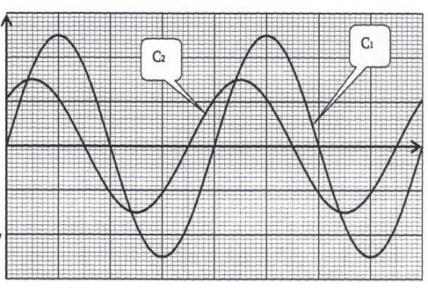
Niveau: 4^{éme} Math,

Série n°5

Prof: Daghsni Sahbi

sc expert. Tech et info

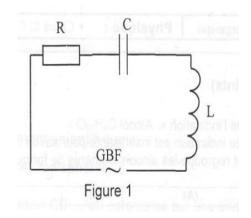

sciences physiques

Physique: Thème: Oscillations électriques forcées

Exercice n°1:

Un circuit électrique est formé par un résistor de résistance $\mathbf{R}=\mathbf{50\Omega}$, une bobine d'inductance \mathbf{L} et de résistance \mathbf{r} et un condensateur de capacité $\mathbf{C}=\mathbf{4\mu F}$, placés en série .L 'ensemble est alimenté par un générateur basse fréquence délivrant une tension $\mathbf{u}(t)=\mathbf{Um}\,\sin(\varpi\,t)$. Un oscilloscope bi courbe permet de visualiser les tensions $\mathbf{u}(t)$ et la tension $\mathbf{u}(t)$ aux bornes du condensateur pour une valeur \mathbf{N}_1 de la fréquence du générateur. Les oscillogrammes sont donnés par le graphe suivant :

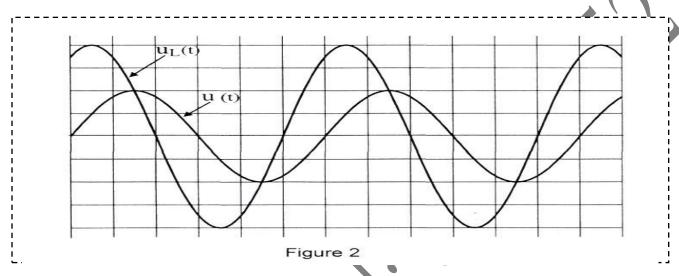
Balayage vertical : 5V/div (mêmes sensibilités verticales pour les deux entrées) Balayage horizontal : 1ms/div



- 1°) Montrer que la courbe C_1 représente $u_{C_1}(t)$.
- b°) Montrer que le déphasage $\Delta \varphi = \varphi_i \varphi_u$ est égale à $\pi/4$. Le circuit est -il inductif ou capacitif ?
- 3°) Calculer l'intensité maximale I_{1m} qui traverse le circuit ainsi que son impédance Z.
- 4°) Déterminer les valeurs de la résistance r et de l'inductance L de la bobine.
- 5°) Ecrire u(t) et $u_c(t)$.
- 6°) En faisant varier la fréquence N du générateur, on constate que pour une valeur $N=N_2$, les deux courbes u(t) et uc(t) deviennent en quadrature de phase .
- a°) Préciser l'état électrique du circuit.
- b°) Calculer N_2 , l'intensité maximale qui traverse le circuit ; ainsi que le facteur de surtension Q.

Exercice n°2:

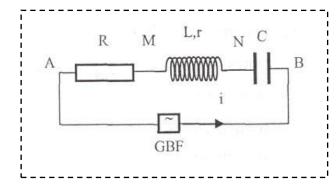
On associe en série ; un conducteur ohmique de résistance $R=200\Omega$, un condensateur de capacité C et une bobine d'inductance L et de résistance négligeable .


L'ensemble est alimenté par un générateur basses fréquences (GBF) délivrant à ses bornes une tension alternative sinusoïdale $\mathbf{u(t)}$ =Um sin $(2\pi Nt)$, d'amplitude Um constante et de fréquence N Réglable . A laide d'un oscilloscope bi courbe , convenablement branché, on visualise simultanément les variations ; en fonction du temps , des tensions $\mathbf{u(t)}$ aux

bornes du générateur et $\mathbf{u}_{L}(t)$ aux bornes de la bobine.

- 1°) Reproduire la figure 1 et indiquer les connexions effectuées à l'oscilloscope.
- 2°) Pour une valeur N_1 , de la fréquence N de la tension délivrée par le GBF, on obtient les oscillogrammes de la **figure 2**, avec les réglages suivants :
- *La sensibilité verticale est la même pour les deux voies :2V.div-1;
- *Le balayage horizontal est :1ms.div-1

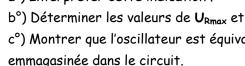
Déterminer graphiquement :



- a°) La fréquence N_1 de la tension u(t);
- b°) Les tensions maximales Um de u(t) et U_{Lm} de u_L(t)
- c°) Le déphasage $\Delta \varphi = \varphi_u \varphi_{uL}$
- 3°) a°)Montrer que l'intensité i(t) du courant dans le circuit est en retard de $\pi/6$ rad par rapport à la tension excitatrice u(t).
- b°) Préciser , en justifiant la réponse , la nature du circuit : inductif, capacitif ou résistif.
- 4°)A partir de la fréquence N_1 , on fait varier la fréquence N de la tension u(t).Pour une valeur N_2 de N, la tension uL(t) devient en quadrature avance de phase par rapport à u(t).Un voltmètre , branché aux bornes de la bobine , indique une tension $U_c=15V$.
- a°) Montrer que le circuit est siège d'une résonance d'intensité.
- b°) Calculer la valeur de l'intensité efficace IO du courant qui circule dans le circuit.
- c°) Déterminer la valeur de la fréquence N_2 . On donne L=1,1H.
- d°) Calculer la valeur de la capacité C du condensateur.

Exercice n°3

On considère un circuit série qui comprend


- *un résistor de résistance R = 40Ω ,
- *une bobine d'inductance L et de résistance interne r .
- un condensateur de capacité C et un générateur de
- basse fréquence GBF délivrant une tension
- u(t)=Um sin (ω t) de fréquence N réglable.

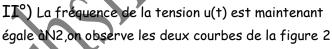
- 1°)Etablir l'équation différentielle des oscillations en fonction de i , $\frac{di}{dt}$ et $\int idt$.
- 2°) A l'aide d'un oscilloscope bi courbe , on visualise la tension $U_R(t)$ aux bornes du résistors et celle U(t) aux bornes du générateur .
- a°) Montrer que la courbe (b) correspondant à $U_R(t)$.

b°) Préciser si le circuit est capacitif, résistif ou inductif.

- 3°) a°) Calculer le déphasage $\Delta arphi = arphi_i arphi_u$ et en déduire l'expression de i(t).
- b°) Calculer la résistance interne r de la bobine.
- 4°) Un voltmètre branché aux bornes de la bobine indique 35,4V, calculer la valeur de l'inductance L en déduire celle de la capacité C.
- 5°) Pour une valeur N1 de N, un voltmètre branché aux bornes du résistor indique la valeur la plus élevée.
- a°) Interpréter cette indication.
- b°) Déterminer les valeurs de U_{Rmax} et de N1.
- c°) Montrer que l'oscillateur est équivalent à un oscillateur libre non amorti, Calculer l'énergie électromagnétique emmagasinée dans le circuit.

Exercice n°4:

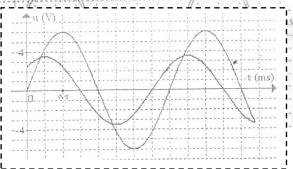
 I°)Un portion de circuit AB comprend en série :


- * un résistor de résistance R = 50Ω ,
- *un condensateur de capacité $C = 1\mu F$,
- *une bobine d'inductance L et de résistance r.

On applique entre les bornes A et B une tension alternative sinusoïdale et on utilise un oscilloscope branché comme l'indique la figure ci-contre :

Pour une fréquence N1 de la tension du générateur u(t) on observe les deux courbes de la figure 1

- 1°) Déterminer la fréquence N₁, la valeur efficace de u(t) et la valeur maximale URm de uR(t)
- 2°) Déterminer la valeur de l'intensité efficace dans le circuit.
- 3°) Calculer les valeurs de l'inductance L'et de la résistance r.
- 4°) Calculer le facteur de surtension Q du circuit.
- 5°) Calculer la tension maximale aux bornes du condensateur Conclure.



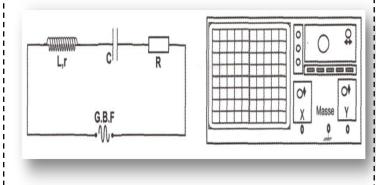
1°)Déterminer le déphasage de la tension uR(t) aux bornes du re du générateur

- 3°)Le circuit est -il inductif ou capacitif ?justifier.
- 4°)a°)Etablir l'équation différentielle en i de l'oscillateur.
- b°) Faire la construction de Fresnel correspondante.
- 5°) Calculer la puissance moyenne consommée par le circuit.

Exercice n°5:

On considère un circuit électrique série constitué par un GBF délivrant une tension sinusoïdale $u(t)=U_m\sin(2\pi Nt)$, un condensateur de capacité $\mathcal C$, un résistor de résistance R=80 Ω et une bobine d'inductance L et de résistance interne r.

Un oscilloscope bi courbe permet de visualiser les tensions u(t) et $u_R(t)$.


1°) Faire les connexions nécessaires sur l'oscilloscope afin de visualiser u(t) et $u_R(t)$ respectivement sur les voies X et Y.

3°) Pourquoi le circuit RLC est dit en oscill. forcées.

4°) Etablir l'équation différentielle relative à l'intensité i du courant.

5°) a°) Faire la construction de Fresnel pour les valeurs particulières de la fréquence N du GBF Préciser pour chacun des cas précédents, l'état électrique du circuit.

b°)Exprimer $I_{\scriptscriptstyle m}$ et $tg(\varphi_i-\varphi_u)$ en fonction de $L,C,\omega,R,retU_{\scriptscriptstyle m}$.

c°) Déterminer l'expression de l'impédance Z du dipôle RLC.

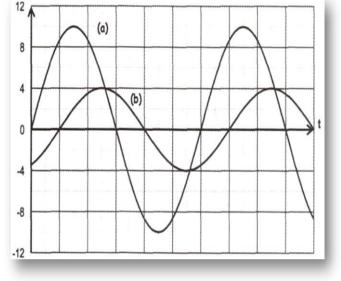
d°) Représenter l'allure de $I_m=f(N)$ pour deux valeurs de R $(R_1\succ R_2)$.

e°) Que devient l'expression de $Z, (\varphi_i - \varphi_u)et I_m$ forsque $N = N_0$?

6°) On fixe la fréquence du GBF à la valeur $N_1=348,43Hz$. Sur la figure suivante , on donne les oscillogrammes observés sur l'oscilloscope.

a°) Montrer que l'oscillogramme (a) représente u(t).

b°) Déterminer le déphasage $\Delta \varphi = \varphi_i - \varphi_u$. En déduire s'il s agit d'un circuit capacitif, résistif ou inductif. c°) Déterminer les valeurs des tensions maximales


 $U_m et U_{_{Rm}}.$ d°) Calculer les valeurs de l'intensité maximale $I_{_m}$

d°) Calculer les valeurs de l'intensité maximale $I_{\scriptscriptstyle m}$ du courant et de l'impédance $Z_{\scriptscriptstyle 1}$ du circuit.

e°) Ecrire u(t) et i(t).

f°) Sachant que $U_{cm}=2{,}28V.$

 f_2°) En déduire les valeurs de la résistance interne r de la bobine, son inductance L et de capacité C du condensateur

