Niveau: 4 éme math,

sc. expert et 7ech

Série n°8 sciences physiques

Prof: Daghsni Sahbi

Physique: Thème: Les Ondes mécaniques Progressives

Exercice n°1: contrôle Bac sc expert 2017

On dispose d'un vibreur muni d'une fourche à pointe unique et d'une cuve à ondes. Au repos, la pointe verticale affleure la surface libre de la nappe d'eau de la cuve à ondes en un point S. En mettant le vibreur en marche, la pointe impose au point S des vibrations sinusoïdales verticales d'amplitude a=2 mm et de fréquence N. Ainsi, une onde progressive, de longueur d'onde λ , prend naissance au point S à l'instant t=0 et se propage à la surface de l'eau avec une célérité v constante. On suppose qu'il n'y a ni réflexion ni atténuation de l'onde au cours de la propagation.

- 1) Décrire l'aspect de la surface libre de l'eau observée en lumière ordinaire.
- 2) La figure 6 représente, à un instant t₀, une coupe de la surface de l'eau par un plan vertical passant par S, M₁ et M₂. Les points M₁ et M₂ sont séparés par la distance d = M₁M₂ = 1,25 cm lorsque le liquide est au repos. Le point M₁ est atteint par l'onde issue de S à l'instant t₁ = 5.10⁻² s.

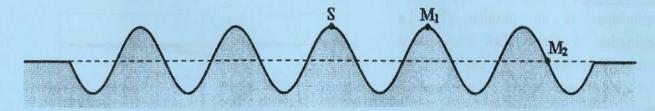


Figure 6

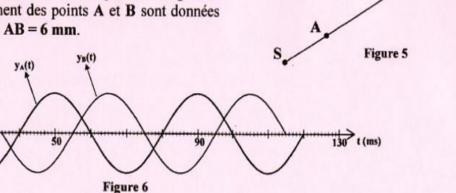
- a- En exploitant la figure 6, déterminer :
 - la longueur d'onde λ ;
 - la célérité v;
 - l'instant t₀.
- b- Montrer que le mouvement du point S est régi par l'équation horaire :
 - $y_s(t) = 2.10^{-3} \sin(40\pi t + \pi)$ pour $t \ge 0$; où y_s s'exprime en mètre et t en seconde.
- 3) a- Etablir l'équation horaire du mouvement du point M2.
 - b- Représenter, sur un même système d'axes, les diagrammes de mouvements des points S et M_2 . Comparer le mouvement du point M_2 à celui de S.
 - c- Déduire, à partir de la figure 6, les lieux géométriques des points vibrants en quadrature retard de phase avec S à l'instant t₀.

Exercice n°2 :contrôle Bac sc expert 2016

Un vibreur, muni d'une pointe fine, provoque des vibrations sinusoïdales verticales d'amplitude a et de fréquence N en un point S de la surface d'une nappe d'eau initialement au repos contenue dans une cuve à ondes. Les bords de la cuve sont tapissés avec de la mousse. Des ondes entretenues de forme circulaire se propagent à la surface de l'eau avec la célérité v. On néglige l'amortissement des ondes.

A l'instant t = 0, le point S débute son mouvement en partant de l'état de repos.

- 1- a) Indiquer pourquoi les bords de la cuve à ondes sont tapissés avec de la mousse.
 - b) Préciser, en le justifiant, si l'onde à la surface de l'eau est transversale ou longitudinale.
- 2- On considère deux points A et B de la surface de l'eau, situés sur un même rayon Sx, comme l'indique la Figure 5.
 Les courbes d'évolution au cours du temps des élongations y_A(t) et y_B(t) respectivement des points A et B sont données par la Figure 6. On donne AB = 6 mm.

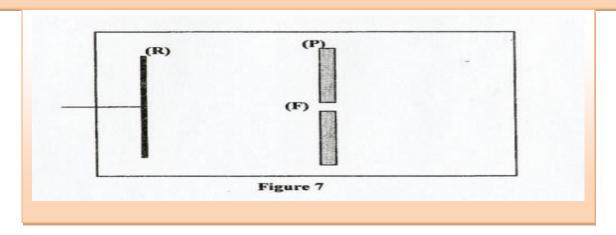


B

- a) En exploitant la Figure 6, déterminer:
 - la fréquence N;
 - la durée Δt qui sépare les dates de passage de l'onde par les deux points A et B.
- b) Calculer la célérité v de l'onde à la surface de l'eau. En déduire la longueur d'onde λ.
- 3- On remplace la pointe précédente par une réglette (R). Parallèlement à (R) et à une certaine distance, on place un obstacle (P) présentant une fente (F) dont la largeur L est du même ordre de grandeur que la longueur d'onde λ, comme le montre la Figure 7 de la page 5/5.

On éclaire la surface de l'eau à l'aide d'un stroboscope de fréquence $N_e = N$.

- a) Nommer le phénomène qui a lieu au niveau de la fente (F).
- b) Compléter la Figure 7 de la page 5/5, à remplir par le candidat et à remettre avec sa copie, en schématisant l'aspect de la surface de l'eau de part et d'autre de l'obstacle (P).



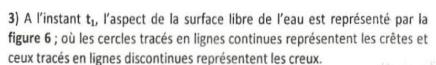
Exercice n°3: Principale Bac sc expert 2014

En un point O de la surface libre de l'eau d'une cuve à ondes, une source ponctuelle S impose, à partir de t = 0 s, des oscillations sinusoïdales verticales d'amplitude a = 2 mm et de fréquence N = 20 Hz.

Le mouvement du point O obéit à la loi horaire : $y_0(t) = a \sin(2\pi N t + \phi_0)$ pour $t \ge 0 s$; où ϕ_0 est la phase à t = 0 s. On suppose qu'il n'y a ni réflexion ni amortissement de l'onde au cours de la propagation.

1) Décrire l'aspect de la surface libre de l'eau éclairée en lumière ordinaire.

- 2) On donne, sur la figure 5, le diagramme du mouvement d'un point M₁ de la surface libre de l'eau situé à la distance 1,25.10⁻²m de O. En exploitant la figure 5 :
 - a déterminer l'équation horaire du mouvement du point M₁ et déduire celle de O;
 - b calculer la valeur de la célérité v de l'onde créée à la surface de l'eau;
 - c déduire la valeur de la longueur d'onde λ.



- $a Montrer que t_1 = 16,25.10^{-2} s.$
- b En justifiant la réponse, comparer les états vibratoires des points
 M₂ et M₃ de la surface de l'eau.
- c Déterminer les lieux géométriques des points M de la surface libre de l'eau qui vibrent à l'instant t₁ en quadrature avance de phase par rapport au point M₂.
- d Représenter l'ensemble de ces points sur la figure 8 de la page 5/5.

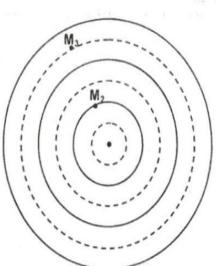
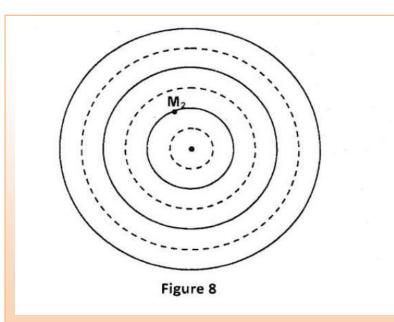


Figure 5

Figure 6



Exercice n°4: Principale Bac sc expert 2013

Une réglette, fixée à un vibreur, impose à la surface libre de l'eau d'une cuve à ondes des vibrations sinusoïdales verticales d'amplitude a et de fréquence N = 10 Hz. On suppose qu'il n'y a ni réflexion, ni amortissement d'ondes.

A partir d'une date t = 0, des rides rectilignes se propagent à partir d'un point source S de la surface de l'eau, à la célérité v. L'élongation de la source S s'écrit :

$$y_s(t) = a \sin(20\pi t + \varphi_s)$$
, $t \ge 0$.

Le graphe de la figure 4 représente une coupe transversale, passant par S, de la surface libre de l'eau à une date t₀.

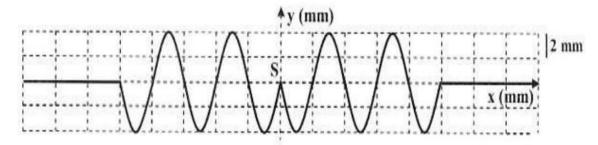


figure 4

 A la date t₀, l'élongation de tout point M de la surface libre de l'eau, situé au repos à la distance SM = x de S, vérifie l'équation :

$$y_M(x) = a \sin(20\pi t_0 + \phi_S - \frac{2\pi x}{\lambda})$$
 tel que $-x_f \le x \le x_f$

où x_f représente l'abscisse du front d'onde.

- a- Déterminer la valeur de to.
- b- Montrer que $\varphi_S = \pi$ rad.
- 2) A la date t_0 , le front d'onde est situé à une distance $x_f = 45$ mm.
 - a- Calculer la valeur de longueur d'onde λ.
 - b- En déduire la valeur de la célérité v de propagation.
- 3) On considère les deux points P et N, de la surface de l'eau, repérés, au repos, respectivement par les abscisses $SP = x_P = 18 \text{ mm}$ et $SN = x_N = 22,5 \text{ mm}$.
 - a- Déterminer le déphasage entre P et N : $\Delta \phi = \phi_P \phi_N$.
 - b- Déterminer les abscisses x_i des points M_i qui vibrent, à la date t₀, en quadrature retard de phase par rapport au point N.

Exercice n°5: contrôle Bac sc expert 2012

Une corde élastique assez longue est tendue horizontalement suivant l'axe (Ox) d'un repère (Oxy). L'extrémité S de cette corde est reliée à un vibreur qui lui impose un mouvement rectiligne sinusoïdal suivant l'axe (Oy) d'équation horaire $y_s(t) = asin(2\pi Nt)$, où a représente l'amplitude du mouvement et N la fréquence de vibration. L'onde créée au point S à l'instant t = 0 s, se propage le long de la corde avec une célérité v constante. On suppose que la propagation de cette onde s'effectue sans amortissement.

Les courbes (1) et (2) de la figure 3 représentent l'aspect de la corde respectivement aux deux instants t_1 et t_2 tels que $t_2 - t_1 = 30$ ms.

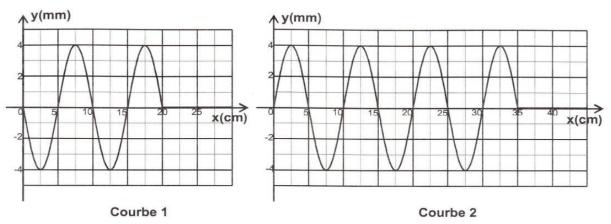


Fig.3

- 1. En exploitant les courbes (1) et (2), déterminer la valeur de :
 - a) la longueur d'onde λ,
 - b) la célérité v de l'onde,
 - c) la fréquence N de vibration.
- 2. On se propose de comparer les vibrations d'un point A d'abscisse $x_A = 17,5$ cm avec celui de S.
 - a) Montrer qu'à l'instant t'₁ = 30 ms, le point A est encore au repos.
 - b) Etablir l'équation horaire du mouvement du point A et en déduire le déphasage de celui-ci par rapport à S.
 - c) Tracer le diagramme de $y_s(t)$ et en déduire, dans le même système d'axes, celui de $y_s(t)$.
 - Retrouver graphiquement le déphasage entre A et S.

Exercice n°6:Principale 2011

EXERCICE 2 (4 points)

Une corde élastique de longueur L = 80 cm est tendue horizontalement. Son extrémité S est liée à une lame vibrante en mouvement sinusoïdal vertical d'équation :

 $y_s(t) = a.sin(\omega t + \phi_s)$ pour $t \ge 0$. L'autre extrémité est munie d'un dispositif qui empêche la réflexion des ondes.

L'amortissement est supposé nul.

- L'aspect de la corde à un instant t_o donné est représenté dans la figure 5.
 - a) Définir la longueur d'onde λ.
 - b) A l'aide de la figure 5 :

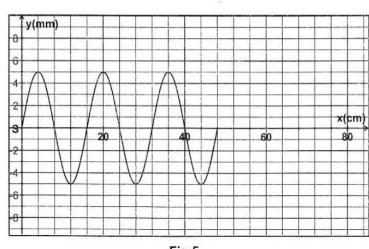


Fig.5

- déterminer l'amplitude de vibration des différents points de la corde atteints par l'onde ainsi que la valeur de la longueur d'onde λ.
- montrer que la phase initiale du mouvement de la source est :

 $\varphi_s = \pi \text{ rad.}$

- 2. a) Sachant qu'un point M_1 de la corde d'abscisse $x_1 = 24$ cm au repos, est atteint par le front d'onde à l'instant $t_1 = 12$ ms :
 - calculer la célérité de l'onde,
 - en déduire la valeur de la période de vibration de la lame excitatrice.
 - b) Déterminer en fonction de λ , la distance séparant le point M_1 de la source S et en déduire la phase initiale du point M_1 .
 - c) Ecrire l'équation horaire du mouvement du point M1 de la corde.
 - a) Déterminer la valeur de l'instant t_o auquel correspond l'aspect de la corde, représenté dans la figure 5.
 - b) Déduire de l'aspect de la corde à l'instant t_0 , son aspect à l'instant t_2 = 36 ms.

Correction de la Série N° 8 Bac sciences expérimentales

Exercice n°1 : contrôle 2017

1- En lumière ordinaire, on observe des rides circulaires concentriques au point S.

2- a-
$$d = 1,25\lambda \Rightarrow \lambda = 1$$
 cm

$$v = {SM_1 \over t_1} = 0,2 \text{ m.s}^{-1}$$

$$t_0 = \frac{x_f}{v} = 13,75.10^{-2} s$$

b-
$$y_S(t) = a\sin(2\pi Nt + \phi_S)$$

$$y_S(t_0) = 2.10^{-3} \sin(40\pi t + \phi_S) = 2.10^{-3} \implies \phi_S = \pi \text{ rad.}$$

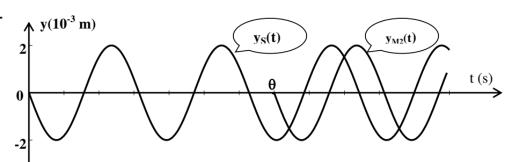
$$y_S(t) = 2.10^{-3}\sin(40\pi t + \pi) \text{ pour } t \ge 0$$

3- a-

$$y_{M2}(t) = y_S(t - \theta)$$
; $\theta = \frac{SM_2}{v}$

$$y_{M2}(t) = \begin{cases} 0 \text{ si } t < \theta \\ 2.10^{-3} \sin(40\pi t + \frac{\pi}{2}) \text{ pour } t \ge \theta \end{cases}$$

h.



M₂ vibre en quadrature retard de phase par rapport à S.

 $\mbox{\ensuremath{c\text{-}}}$ Les points sont situés sur des cercles concentriques en S et de rayons :

$$r_1 = 0.25$$
 cm

$$r_2 = 1,25$$
 cm

$$r_3 = 2,25$$
 cm

Exercice n°2:contrôle 2016

Eléments de réponse Points Critères

- 1- a) Les bords de la cuve sont tapissés avec de la mousse pour empêcher le phénomène de la réflexion des ondes.
- b) Il s'agit d'une onde transversale car la direction de propagation est perpendiculaire à celle des oscillations imposées par le vibreur.

2- a) On a
$$N = \frac{1}{T}$$
 or $T = 0.04$ s donc $N = 25$ Hz

On a
$$\Delta t = \theta_B - \theta_A = 35 - 20 = 15 \text{ ms} = 15.10^{-3} \text{ s}.$$

b) On a:
$$v = \frac{AB}{\Delta t}$$
 or $AB = 6$ mm et $\Delta t = 15$ ms donc $v = 0.4$ m.s⁻¹.

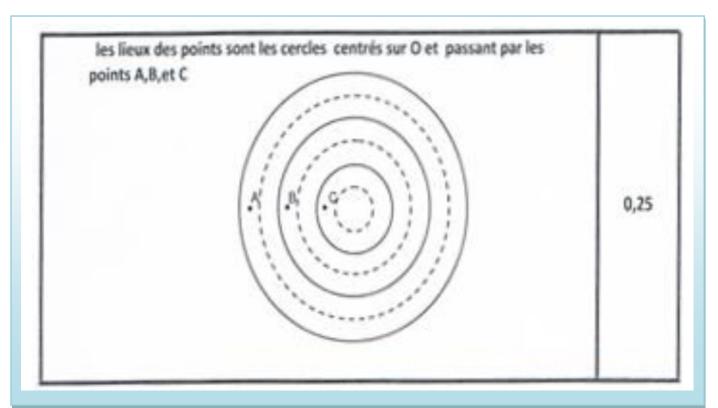
$$\lambda = vT = \frac{v}{N} \text{ or } v = 0.4 \text{ m.s}^{\text{-}1} \text{ et } N = 25 \text{ Hz donc } \lambda = 16.10^{\text{-}3} \text{ m} = 16 \text{ mm}.$$

- 3- a) Il se produit le phénomène de diffraction des ondes.
- b) La longueur d'onde est la même de part et d'autre de l'obstacle (P).



Exercice n°3: Principale 2014

 Des rides circulaires concentriques qui se propagent à la surface libre de l'eau. 	0,25
2) a – Le point M₁ débute son mouvement à l'instant t₁= 5T/4; Pour t ≤ 5T/4; y_{Mt}(t) =0.	
Pour $t \ge 5T/4$; $y_{MS}(t) = a \sin(2\pi N t - \frac{\pi}{2})$. Avec $a = 2mm$. Équation horaire de la source O :	0,25x2
$\gamma_O(t) = \gamma_M(t + \Delta t); \Delta t = T + \frac{T}{4}.$	0,5
y_0 (t) = $a \sin (2 \pi N (t + \Delta t) - \frac{\pi}{2}) = a \sin (2 \pi N t)$. $b - La célérité v de l'onde est v = \frac{d_1}{\Delta t} = 0.2 \text{ m.s}^{-1}.$	0,25x2
$c - \lambda = \frac{V}{N} = 0.01 \text{ m} = 1 \text{ cm}.$	0,25
a) $a - \lambda$ l'instant t_x le front d'onde a parcouru la distance $D = 3\lambda + \frac{\lambda}{4}$; $t_1 = \frac{D}{10} = \frac{13 \lambda}{10} = 16,25.10^{-2} \text{ s.}$	0,5
 b - M₂ et M₃ vibrent en opposition de phase car M₂ appartient à une crête et M₃ appartient à un creux, c - Les points M de la surface libre de l'eau qui vibrent à l'instant t₁ en 	0,25
quadrature avance de phase par rapport au point M_2 sont des cercles de centre O de rayons respectifs : $\frac{3\lambda}{4}$, $\frac{7\lambda}{4}$ et $\frac{11\lambda}{4}$.	0,25x2



Exercice n°4: Principale 2013

Q	Corrigé	Barème	
1-a	A partir des relations : $x_f = 2.5\lambda$; $x_f = v.t_0$ et $x_f = \frac{\lambda}{T}.t_0$ on trouve : $t_0 = 2.5T = 0.25s$	2 x 0,25	
1-b	A la date t_0 , le front d'onde se termine par un creux d'où $\phi_s = \pi$ rad.	2 x 0, 5	
2-a	$x_f = 2.5\lambda = 45 \text{ mm} \Rightarrow \lambda = 18 \text{mm}.$	2 x 0,25	
2-b	$\lambda = v.T = \frac{v}{N} \Rightarrow v = \lambda.N = 0.18 \text{m.s}^{-1}$	2 x 0,25	
3-a	$\Delta \varphi = \varphi_p - \varphi_N = -\frac{2\pi}{\lambda} (x_p - x_N) = \frac{\pi}{2} \text{ rad}$	2 x 0,25	
3-b-	Abscisses des points P_i , qui vibrant à t_0 , en quadrature de phase par rapport à N . $\Delta \phi = \phi_{pi} - \phi_N = -\pi/2$ rad. En ayant : $x_N = 1,25.\lambda \Rightarrow -\frac{2\pi}{\lambda}(x_{pi} - x_N) = -\frac{\pi}{2} + 2k\pi \Rightarrow x_{pi} = 1,5\lambda - k\lambda$ et que $0 \le 1,5\lambda - k\lambda \le 2,5\lambda$ On déduit que : $\frac{k}{x_{pi}} \frac{1}{\lambda/2} \frac{0}{3\lambda/2} \frac{-1}{5\lambda/2}$ Par symétrie par rapport à l'axe des y , on déduit les x_{pi} d'abscisses négatives. N.B Accepter le raisonnement sur le tracé du schéma.	2 x 0, 25	

Exercice n°5 : contrôle 2012

- **1.a** D'après les courbes on a : $\lambda = 10$ cm
 - **b** Pendant la durée $\Delta t = t_2 t_1 = 3.10^{-2}$ s, l'onde a parcouru la distanc

$$\Delta x = x_2 - x_1 = 35 - 20 = 15$$
 cm donc la célérité V est telle que : $V = \frac{\Delta x}{\Delta t} = 5$ m.s⁻¹.

c- On a
$$\lambda = \frac{V}{N}$$
 ainsi $N = \frac{V}{\lambda} = 50 \text{ Hz}$

2.a- Pour atteindre le point A d'abscisse $x_A = 17,5$ cm, l'onde met une durée θ_A telle que : $\theta_A = \frac{x_A}{V} = \frac{17,5.10^{-2}}{5} = 3,5.10^{-2} \text{ s} > t_1' = 3.10^{-2} \text{ s}$, ainsi le point A est encore au repos à l'instant t_1' .

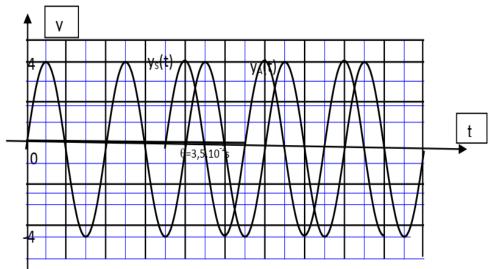
b- On a :
$$y_S(t) = a\sin(2\pi Nt)$$
 et $y_A(t) = a\sin(2\pi Nt - \frac{2\pi x_A}{\lambda})$

pour
$$t \ge \theta_A = 3.5.10^{-2} s$$
 ou encore $y_A(t) = 4.10^{-3} \sin(100 \pi t + \frac{\pi}{2})$

pour
$$t \ge \theta_A = 3,5.10^{-2} s$$

On a:
$$|\Delta \varphi| = \left| \frac{2\pi x_A}{\lambda} \right| = 3, 5.\pi = 4\pi - \frac{\pi}{2}, \ \phi_A - \phi_S = \frac{\pi}{2} \text{ rad.}$$

C.



Graphiquement: $\varphi_A - \varphi_S = \frac{\pi}{2}$ rad.

Prof: Daghsni Sahbi