A-S: 2013 - 2014

PROF: Loukil Mohamed

SERIE \mathcal{N} : 1

CLASSE: 3 Science

 $\begin{tabular}{l} \hline \it{EXERCICE~N:1} \end{tabular} \label{eq:exercise}$ Déterminer l'ensemble de définition et étudier la parité des fonctions suivantes :

$$f(x) = x^2 - 2|x|$$

$$g(x) = \frac{x^3}{x^2 - 1}$$

$$h(x) = \sqrt{x^2 - 1}$$

$$k(x) = \frac{1}{x-1} + \sqrt{4-x^2}$$

$$f(x) = x^{2} - 2|x| ; g(x) = \frac{x^{3}}{x^{2} - 1} ; h(x) = \sqrt{x^{2} - 1} ; k(x) = \frac{1}{x - 1} + \sqrt{4 - x^{2}} ;$$

$$F(x) = |2 - 3x| - |3x + 2| ; G(x) = \frac{\sqrt{x^{2} - 1}}{|x| - 1} ; H(x) = \frac{2x - x^{3}}{x^{2} - |2x|} .$$

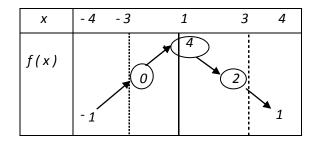
$$G(x) = \frac{\sqrt{x^2 - 1}}{|x| - 1}$$
;

$$H(x) = \frac{2x-x^3}{x^2-|2x|}$$

EXERCICE $\mathcal{N}:2$

On donne le tableau de variations de la fonction f définie sur [-4;4].

- 1) Comparer f(-3) et f(-1) puis f(2) et f(4).
- 2) Prouver que f n'est ni paire et ni impaire.
- 3) Préciser les extrema de f et leurs nature .
- 4) a) f est elle majorée sur [-4;4]? si oui donner un majorant de f.
 - b) f est elle bornée? justifier votre réponse.



EXERCICE N: 3

Soit la fonction f définie par : f(x) = |x-2| + 2|x+2| - x-4.

- 1) Montrer que f est une fonction affine par intervalles.
- 2) Tracer la courbe (Cf) dans un repère orthonormé.
- 3) Résoudre graphiquement :
- $\bullet f(x) = 1$

EXERCICE N: 4 On considère la fonction f définie par : f(x) = x + E(x) si $-1 \le x < 1$ f(x) = -x + 2 si $1 \le x$

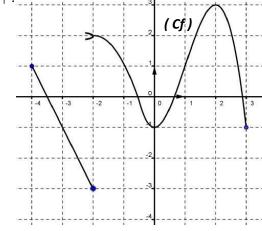
- 1) Montrer que f est une fonction affine par intervalles.
- 2) Construire la courbe représentative de f .
- 3) Déduire la courbe représentative de la fonction g définie par g(x) = |f(x)|.
- 4) Résoudre graphiquement $g(x) = -\frac{1}{3}x + \frac{2}{3}$
- 5) Expliciter g(x).

EXERCICE $\mathcal{N}: 5$

La courbe ci-contre est la représentation d'une fonction f.

- 1) Déterminer le domaine de définition de f .
- 2) Déterminer le domaine de continuité de f .
- 3) Préciser les extrema de f et leur nature.
- 4) Déterminer $\lim_{x\to -2^-} f(x)$ et $\lim_{x\to -2^+} f(x)$
- 5) Résoudre graphiquement l'équation : f(x) = -1.
- 6) Soit g la fonction définie par : g(x) = f(|x|).

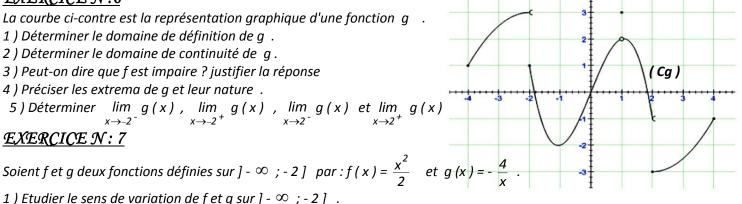
Tracer dans le même repère la courbe de (Cq).



EXERCICE $\mathcal{N}:6$

La courbe ci-contre est la représentation graphique d'une fonction g .

- 1) Déterminer le domaine de définition de q.
- 2) Déterminer le domaine de continuité de g.
- 3) Peut-on dire que f est impaire ? justifier la réponse
- 4) Préciser les extrema de g et leur nature.
- 5) Déterminer $\lim_{x\to -2^{-}} g(x)$, $\lim_{x\to -2^{+}} g(x)$, $\lim_{x\to 2^{-}} g(x)$ et $\lim_{x\to 2^{+}} g(x)$



EXERCICE $\mathcal{N}: 7$

1) Etudier le sens de variation de f et g sur] - ∞ ; - 2] .

- 2) Soit la fonction h définie sur] ∞ ; 2] par: h(x) = $\frac{x^3 + 8}{2x}$.
 - a) Vérifier que h(x) = f(x) g(x) puis déduire le sens de variation de h sur $] \infty$; 2].
 - b) Montrer que h est minorée par 0 .

EXERCICE N: 8

Soit f une fonction définie sur IR tel que : pour tout $x \in IR$, $f(-x) + 3f(x) = 4x^3 + 2x$.

- 1) a) Montrer que f est impaire.
 - b) Déduire que pour tout $x \in IR$; $f(x) = 2x^3 + x$.
- 2) Soit q la fonction définie sur IR par : $q(x) = 2x^3$.
 - a) Etudier le sens de variations de g sur IR .
 - b) Déduire le sens de variations de f sur IR .
- 3) On pose h (x) = $\frac{1}{\sqrt{f(x)}}$
 - a) Déterminer Dh puis étudier le sens de variations de h sur Dh .
 - b) Montrer que h est bornée sur $[1, +\infty [$

EXERCICE N: 9

Cocher la seule réponse exacte

- 1) Soit M un point de la droite (AB) tel que AM. AB = 3 alors :
 - $\square M \in [AB]$
- $\square M \in [AB] \setminus [AB]$

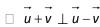
- $\square M \in [BA) \setminus [AB]$
- 2) ABCD un carré de centre O et de coté 2 cm alors AB.CO est égal à :
 - □ 2

□ 4

□ 2

- 3) $Si \parallel \overrightarrow{u} \parallel = \parallel \overrightarrow{v} \parallel alors : 4 \text{ et } BC = 3$.
 - $\Box u = v$

 $\Box \quad \overrightarrow{u} = \overrightarrow{v} \quad ou \quad \overrightarrow{u} = -\overrightarrow{v}$



EXERCICE N:10

Soit ABCD un rectangle tel que AB = 4 et BC = 3.

ABE un triangle équilatéral extérieur à ABCD , I est le milieu de [AB] .

- 1) Calculer : \overrightarrow{AB} . \overrightarrow{AE} ; \overrightarrow{AB} . \overrightarrow{AD}
- 2) a) Montrer que $\stackrel{\frown}{AD}$. $\stackrel{\frown}{AE} = -6\sqrt{3}$.
 - b) En utilisant la relation de Chasles , montrer que $\stackrel{\rightarrow}{BD}$. $\stackrel{\rightarrow}{BE}$ = 8 6 $\sqrt{3}$.
 - c) Déduire la valeur de cos(DBE).

EXERCICE N: 11

Soit un trapèze ABCD de bases [AB] et [CD] tel que : CD = 4 , $AD = \sqrt{2}$, $ADC = \frac{\pi}{4}$ et $BCD = \frac{\pi}{6}$.

- 1) Soit H le projeté orthogonal de A sur (DC) . Calculer AH , BC et AB $\,$.
- 2) Calculer $\stackrel{\rightarrow}{AD}$. $\stackrel{\rightarrow}{CD}$, $\stackrel{\rightarrow}{BC}$. $\stackrel{\rightarrow}{BA}$ et $\stackrel{\rightarrow}{AD}$. $\stackrel{\rightarrow}{AB}$
- 3) Calculer \overrightarrow{AD} . \overrightarrow{BC} puis déduire $\cos(\frac{7\pi}{12})$.

EXERCICE N: 12

Soit ABCD un carré de côté 2 , I le milieu de [BC] et J le milieu du segment [CD] .

- **1)** On pose: $I \stackrel{\wedge}{A} J = \theta$. Calculer $\stackrel{\rightarrow}{A} J$. $\stackrel{\rightarrow}{A} J$ puis déduire que $\cos \theta = \frac{4}{5}$.
- 2) Montrer que les droites (AI) et (BJ) sont perpendiculaires.
- 3) Soit H le point d'intersection des droites (AI) et (BJ). Montrer que $BH = \sqrt{\frac{4}{5}}$.

EXERCICE N: 13

ABCD un trapèze rectangle en C et D et E un point du segment [DC] tels que AD = 3; DE = 1 et DC = BC = 4.

- 1) Calculer les distances EA, EB et AB.
- 2) a) Calculer $\overrightarrow{ED} \cdot \overrightarrow{EC}$ et $\overrightarrow{DA} \cdot \overrightarrow{CB}$.
 - b) En utilisant la relation de Chasles, montrer que $\overrightarrow{EA} \cdot \overrightarrow{EB} = 9$.
 - c) Déduire la valeur de cos (AEB).
- 3) a) Calculer $\overrightarrow{CA} \cdot \overrightarrow{CB}$ et $\overrightarrow{CA} \cdot \overrightarrow{CE}$
 - b) Déduire que les droites (CA) et (BE) sont perpendiculaires.

