REPUBLIQUE TUNISIENNE

MINISTERE DE L'EDUCATION ET DE LA FORMATION

DEVOIR DE CONTROLE N°: 1

LYCEE DE KASSERINE

MR: JEMLI KHALED

EPREUVE: MATHEMATIQUES

COEFFICIENT: 4

NIVEAU ET SECTION : 4 éme SC

Première trimestre

Date: 15 Novembre 2012

Durée: 2 Heures

QCM: 4,5pts

Dans chaque question indiquer la bonne réponse.

- 1) Soit $Z=-3 \left(\frac{1+i\sqrt{3}}{i}\right)$ alors:
 - a) Un argument de Z est: -3 arg $(\frac{1+i\sqrt{3}}{i})$; $\pi+arg(1+i\sqrt{3})-argi$; -3 $\frac{arg(1+i\sqrt{3})}{argi}$
 - b) Le module de Z est : $-3\left|\frac{1+i\sqrt{3}}{i}\right|$; $3\left|1+i\sqrt{3}\right|$; $3\left(\left|1+i\sqrt{3}\right|-\left|i\right|\right)$
- 2) Les solutions de l'équation $z^6=8i$ sont les z_k avec $k \in \{0; 1; \dots, 5\}$ vérifiant : $z_k = \sqrt{2} e^{i\left(\frac{\pi}{12} + \frac{k\pi}{3}\right)}$; $z_k = \sqrt{2} e^{i\left(\frac{\pi}{12} + \frac{k\pi}{3}\right)}$; $z_k = \sqrt{2} e^{i\left(\frac{\pi}{12} + \frac{k\pi}{3}\right)}$
- 3) On note (E): $3z^2-z+5=0$ alors (E) possède dans C:
 - Deux solutions réelles une racine double deux solutions conjuguées
- 4) Soit f une fonction continue et strictement croissante sur [-1.3] vérifiant f(-1)=-2 et f(3)=-1. Alors l'équation f(x)=0 admet dans [-1.3]:
 - deux solutions une seule solution aucune solution.
- 5) Soient f et g deux fonctions tels que : $\lim_{x \to +\infty} f(x) = 1$ et $\lim_{x \to 1} g(x) = 3$ alors :

$$\lim_{x \to +\infty} fog(x) = 3$$

$$\lim_{x \to +\infty} gof(x) = 3$$

$$\lim_{x \to 1} gof(x) = 3$$

Ex2 :8pts

$$A - Soit f(x) = \begin{cases} x + \sqrt{x^2 - 1} & si x < -1 \\ 4x^3 + 6x^2 & si -1 \le x \le 0 \\ \frac{1 - \cos(\pi x)}{x} & si x > 0 \end{cases}$$

- 1) a) Calculer: $\lim_{x \to -\infty} f(x)$
- b) Montrer que $\forall x > 0$; $0 \le f(x) \le \frac{2}{x}$
- c) En déduire : $\lim_{x \to +\infty} f(x)$
- 2) Etudier la continuité de f en -1 et en 0.

B- Soit
$$g(x) = \sqrt{x^2 - 1} - 4 \quad \forall \ x \in IR.$$

- 1) Déterminer le domaine de continuité de g.
- 2) Soit h la restriction de g à l'intervalle $[1; +\infty[$.
 - a) Montrer que h est strictement croissante $sur[1; +\infty[$.
 - b) Déterminer $h([1; +\infty[)$.
 - c) Montrer que l'équation h(x)=0 admet dans [4;5] une unique solution α .
- 3) Soit $\varphi(x)=h(x)+x \quad \forall x \in [1; +\infty[.$
 - a) Montrer que φ est strictement croissante sur[1; $+\infty$ [.
 - b) Déterminer $\varphi([2;3])$.
 - c) Déduire que l'équation h(x)=-x admet dans [2 ;3] une unique solution x_0 .

- **A-** 1) Soit $a=-1-2i\sqrt{2}$ un nombre complexe. Déterminer les racines carrées de a.
 - 2) Résoudre dans Cl'équation : z^2 $(1+i\sqrt{2})z + i\sqrt{2} = 0$.
- **B-** On donne les points : A; B; M et M' les points d'affixes respectives : 1; $i\sqrt{2}$; z et $z' = \frac{z-i\sqrt{2}}{z-1}$ avec $z\neq 1$
 - 1) a) Montrer que $|z'| = \frac{BM}{AM}$.
 - b) Déduire l'ensemble des points M(z) tel que :|z'|=1.
 - 2) Chercher l'ensemble des points M(z) tel que : $Arg(z') = \frac{\pi}{2} [2\pi]$.
 - 3) a) Montrer que $\forall z \neq 1; |z'-1||z-1| = \sqrt{3}$.
 - b) Déduire que si M appartient au cercle de centre A et de rayon $\sqrt{3}$ alors M' appartient à un cercle que l'on déterminera.
 - 4) Soit D le point d'affixe $z_{D}=e^{i\theta}$ avec $\theta \in]0; \pi[$.
 - a) Vérifier que : $e^{i\theta}$ -1 = $2i \sin \frac{\theta}{2} e^{i\frac{\theta}{2}}$.
 - b) Déduire AD en fonction de θ .
 - c) Déterminer la valeur de θ pour que : ABD soit isocèle en A.

Bon travail