DEVOIR DE CONTROLE N°1

Prof: Tlich Ahmed

(BAC science)

AS: 2012/2013

Durée: 2h

Exercice $n^{\circ}1$: (3 points)

Choisir l'unique bonne réponse et sans justification.

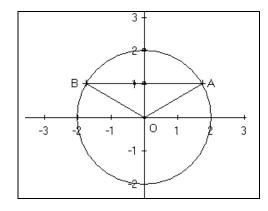
- 1) Soit (U_n) une suite qui vérifie : $|U_n 1| \le (-\frac{1}{3})^n$ alors :
- a) U converge vers 1
- b) U converge vers 0
- c) U est divergente
- 2) Le plan complexe est muni d'une repère orthonormé $(0, \vec{i}, \vec{j})$. On donne les points A et B d'affixes respectifs Z_A= 2i et Z_B=-2i alors l'ensemble des points M d'affixe Z vérifiant |Z + 2i| = 2 est:
- a) le cercle de centre A et de rayon 2
- b) le cercle de centre B et de rayon 2
- 3) Le plan complexe set muni d'une repère orthonormé
- $(0, \vec{i}, \vec{j})$. On donne dans la figure ci contre un cercle de centre O et de rayon 2 et deux points A et B tel que :

$$Z_{A} = 2e^{i\frac{\pi}{6}}$$
 alors :
a) $Z_{B} = 2e^{-i\frac{\pi}{6}}$ b) $Z_{B} = e^{i\frac{5\pi}{6}}$ c) $Z_{B} = 2e^{5i\frac{\pi}{6}}$

a)
$$Z_B = 2e^{-i\frac{\pi}{6}}$$

b)
$$Z_{R} = e^{i\frac{5\pi}{6}}$$

c)
$$Z_B = 2e^{5i\frac{\pi}{6}}$$



Exercice $n^{\circ}2$: (6 points)

Le plan complexe est muni d'un repère orthonormé direct (O, \vec{u}, \vec{v}) .

On considère les points A et B d'affixes respectifs $Z_A = \sqrt{3} + i$ et $Z_B = -1 + i\sqrt{3}$.

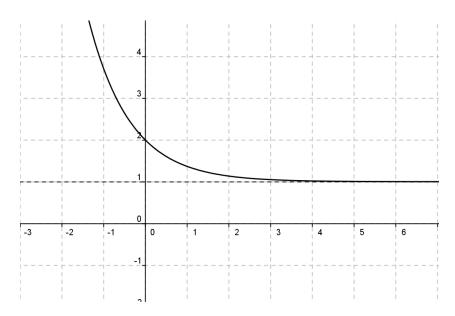
- 1) a) Ecrire sous forme exponentielle Z_A et Z_B .
 - b) Construire les points A et B dans le repère.
 - c) Ecrire $\frac{Z_B}{Z_A}$ sous forme exponentielle.
 - d) Déduire que OAB est un triangle rectangle et isocèle en O.
 - e) Déterminer sous forme algébrique l'affixe du point C pour que le quadrilatère OACB soit un carré.
- 2) Soit un point M d'affixe $Z_M = 1 + e^{2i\theta}$ où $\theta \in [0, \frac{\pi}{2}]$.
- a) Montrer que $Z_M = 2 \cos \theta \ e^{i\theta}$ puis vérifier que c'est son écriture sous forme exponentielle.
- b) Déterminer la valeur de θ pour que M varie sur la cercle de centrer O et de rayon 2.
- c) Déterminer la valeur de θ pour que O, A et M soient alignées.

Exercice n°3: (6 points)

Soit la fonction f définie sur IR par
$$f(x) = \begin{cases} \frac{\sqrt{x^2 + 1} + x}{x^2 + 1} & si \quad x \neq 0 \\ x^3 + 2x + 1 & si \quad x \leq 0 \end{cases}$$

- 1) a) Montrer que pour tout $x \in]0,+\infty[: 0 \le f(x) \le \frac{2x+1}{x^2+1}$
 - b) Déduire $\lim_{x \to +\infty} f(x)$.
- 2) Montrer que f est continue en 0.
- 3) a) Etudier les variations de f sur]- ∞ ,0].
 - b) Monter que l'équation f(x) = 0 admet dans $]-\infty,0]$ une unique solution α puis vérifier que $-0.5 \le \alpha \le -0.4$.
- 4) La courbe ci dessous représente une fonction g qui admet la droite D:y=1 comme asymptote horizontale en $+\infty$ et une branche infinie parabolique au voisinage de $-\infty$ de direction (oy)
 - a) Dresser graphiquement le tableau de variation de g.
 - b) Calculer ces limites:

$$\lim_{x \to +\infty} gof(x) \qquad \lim_{x \to -\infty} fog(x) \qquad \lim_{x \to 2^+} g(\frac{2x}{x-2})$$



Exercice n°4: (5 points)

On définit deux suites U et V par U_0 =1, V_0 =12 et pour tout entier naturel n: $\begin{cases} U_{n+1} = \frac{U_n + 2V_n}{3} \\ V_{n+1} = \frac{U_n + 3V_n}{4} \end{cases}$

- 1) On appelle W la suite définie pour tout entier naturel n par $W_n=V_n-U_n$ Montrer que W est une suite géométrique à terme positif dont on précisera la raison.
- 2) Montrer que la suite U est croissante et que la suite V est décroissante
- 3) Montrer que les deux suites U et V convergent vers la même limite que l'on appellera α .
- 4) On appelle t la suite définie pour tout entier naturel n par $t_n=3U_n+8V_n$
- a) Montrer que t est une suite constante. Déterminer cette constante
- b) Déterminer alors la valeur de α .

Bon travail