Lycée Souassi

2018 - 2019

Devoir de contrôle N°1

MATHEMATIQUES

Prof: A.AZZOUZ

Durée :2h

Classe: 4SC₁

Exercice N°1 (5pts)

Soit f la fonction définie sur IR^* par $f(x) = \begin{cases} \frac{\sqrt{1+x^2}-1}{x} \dots si \dots x \le 0 \\ \frac{x^3 \sin\left(\frac{\pi}{x}\right)}{x^2+1} \dots si \dots x \ge 0 \end{cases}$

- 1) Calculer: $\lim_{x \to \infty} f(x)$
- 2) Montrer que : $\lim_{x \to \infty} f(x) = \pi$
- 3) a) Montrer que pour tout $x \ge 0$; on a: $|f(x)| \le x^3$
 - b) En déduire la limite de f à droite en 0.
 - c) f est-elle prolongeable par continuité en 0 ? justifier .
- 4) a) Montrer que l'équation f(x)=1 admet au moins une solution $\alpha \in]1;2[$
 - b) Vérifier que: $\sin\left(\frac{\pi}{\alpha}\right) = \frac{1}{\alpha} + \frac{1}{\alpha^3}$
- 5) Calculer: $\lim_{+\infty} f\left(\frac{\pi}{f(x)}\right)$ et $\lim_{-\infty} f\left(\frac{\alpha \cdot x^2}{x^2 + 1}\right)$

Exercice N° 2 (6pts)

Soit $\theta \in [0; \pi]$.

Dans **la figure 1** (Annexe à rendre avec la copie) on donne :

- $(O; \vec{u}; \vec{v})$ est un repère orthonormé direct.
- . (ζ) est un cercle de centre O et de rayon 1.
- E est un point de (ζ) tel que $(\vec{u}; \overrightarrow{OE}) = \theta[2\pi]$.
- . D est un point de $(O; \vec{v})$ tel que : $z_D = i\sqrt{1 + \sqrt{2}}$
- 1) a) Vérifier que : $OD^2 = 1 + \sqrt{2}$
 - b) Soit A le point d'affixe $z_A = z_D.e^{i\theta}$

Vérifier que $z_A = OD..e^{i\left(\theta + \frac{\pi}{2}\right)}$

- c) Construire alors le point A.
- 2) On considère l'équation (E): $z^2 + \frac{\sqrt{2}}{i\sqrt{1+\sqrt{2}}}e^{i\theta}z + e^{2i\theta} = 0$
 - a) Vérifier que z_A est une solution de l'équation (E).
- b) On désigne par B le point d'affixe z_B où z_B est la deuxième solution de l'équation (E) .

Prouver que : $z_B = \frac{1}{OD} e^{i\left(\theta - \frac{\pi}{2}\right)}$.

- 3) a) Montrer que : O ; A et B sont alignés.
 - b) Placer le point C d'affixe $z_C = ODe^{i\theta}$
- 4) a) Montrer que : $\frac{Aff(\overrightarrow{AC})}{Aff(\overrightarrow{AB})} = \frac{\sqrt{2}}{2}(1+i)$
 - b) En déduire que ABC est un triangle isocèle et que $(\overrightarrow{AB}; \overrightarrow{AC}) = \frac{\pi}{4} [2\pi]$
 - c) Construire alors le point B.

Exercice N°3 (5pts)

- 1) Déterminer les racines cubiques de l'unité.
- 2) a) Vérifier que $[3\sqrt{3}(1+i\sqrt{3})]^2 = -54 + 54\sqrt{3}i$
 - b) Résoudre dans \mathbb{C} l'équation (E_1) : $2z^2 + 3(i \sqrt{3})z + 9(1 i\sqrt{3}) = 0$
 - (On notera z_1 la solution imaginaire pure et z_2 l'autre solution)
 - c) Ecrire z_1 et z_2 sous forme exponentielle.
- 3) Soit le nombre complexe $z_3 = -z_2$

Vérifier que $z_3 = 3e^{i\frac{5\pi}{6}}$

- 4) Montrer que z_1 ; z_2 et z_3 sont les racines cubiques de 27i
- 5) Résoudre dans C l'équation $(E_2): z^6 (1 + 27i)z^3 + 27i = 0$

Exercices N°4 (4 pts)

Soit la suite (U_n) définie sur IN par : $\begin{cases} U_0 = 2 \\ U_{n+1} = \frac{U_n^2 - U_n + 2}{1 + U_n} \end{cases}$

- 1) Montrer que pour tout $n \in IN$ on a : $1 \le U_n \le 2$
- 2) a) Montrer que la suite $\left(U_{\scriptscriptstyle n}\right)$ est décroissante.
 - b) En déduire que la suite (U_n) est convergente et calculer sa limite.
- 3) a)Montrer que pour tout $n \in IN$ on a : $0 \le U_{n+1} 1 \le \frac{1}{3}(U_n 1)$
 - b) En déduire que pour tout $n \in IN$ on a : $0 \le U_n 1 \le \frac{1}{3^n}$
 - c) Retrouver : $\lim_{n \to \infty} U_n$

NOMPRENOM

ANNEXE A RENDRE AVEC LA COPIE

