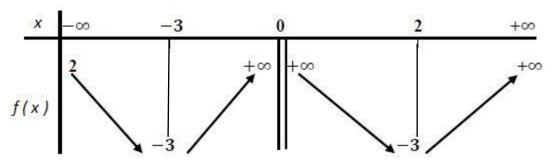
<u>Lycée Houmet Souk</u> Prof: Loukil Mohamed

Devoir de Contrôle N: 1 4 Sciences EXp 3 Durée : 2 Heures

EXERCICE N : 1 (3 points)

Le tableau ci-dessous représente les variations d'une fonction f définie et **dérivable** sur IR^* . On désigne par **(Cf)** la représentation graphique de f dans un repère orthonormé (O,\vec{i},\vec{j}) .



On suppose que la droite Δ : y = 3x + 2 est une asymptote à **(Cf)** au voisinage de $+\infty$ et que la droite T: y = -2x + 1 est la tangente à (Cf) au point A(1, -1).

1) Déterminer
$$\lim_{x \to -\infty} f(x)$$
; $\lim_{x \to +\infty} \frac{f(x)}{x}$; $\lim_{x \to +\infty} [f(x) - 3x]$; $\lim_{x \to 1} \frac{f(x) + 1}{x - 1}$ et $f(] - \infty$; $0[]$.

- **2)** Soit les fonctions g et h définies par : g(x) = 3 + f(x) et $h(x) = f \circ g(x)$.
 - $oldsymbol{a}$) Déterminer les domaines de définitions des fonctions g et h .
 - **b)** Déterminer $\lim h(x)$ et h'(1).

EXERCICE N: 2 (6.5 points)

On considère la fonction f définie sur IR* par $: f(x) = \begin{cases} x^2 \sin(\frac{\pi}{x}) & \text{si} \quad x \in]-\infty; \ 0 \\ \frac{\sqrt{x^2 + 1} - 1}{\sqrt{x^2 + 1}} & \text{si} \quad x \in [0:+\infty] \end{cases}$

On désigne par (Cf) sa courbe représentative dans un repère orthonormé (O, i, j).

- **1)** Calculer $\lim_{x \to -\infty} f(x)$ et $\lim_{x \to -\infty} \frac{f(x)}{x}$.
- **2)a)** Montrer que pour tout $x \in]-\infty$; 0 [on $a:-x^2 \le f(x) \le x^2$.
 - **b**) Montrer que f est prolongeable par continuité en 0.
- **3) a)** Montrer que f est dérivable sur $]0; + \infty$ [et que $f'(x) = \frac{\sqrt{x^2 + 1 1}}{x^2 \sqrt{x^2 + 1}}$.
 - **b**) Prouver alors que f est strictement croissante sur] 0; + ∞ [puis déterminer $f(]0; + \infty$ [).
 - **c)** Déduire que l'équation : $f(x) = \frac{1}{2}$ admet une unique solution $\alpha \in (0, \infty)$.
- **4) a)** Justifier la continuité de f sur $]-\infty$; [0].
 - **b**) Montrer que l'équation : f(x) = x admet au moins une solution $\beta \in]-2$; -1[.

EXERCICE N: 3 (5 points)

- **1)** Ecrire sous la forme exponentielle le nombre complexe : $\mathbf{a} = -2 + 2i \sqrt{3}$.
- **2)** Soit $f(Z) = Z^2 + (1 2i\sqrt{3})Z 2 + 2i\sqrt{3}$ où Z est un nombre complexe.
 - **a)** Calculer f(1).
 - **b**) Déterminer alors les solutions de l'équation f(Z) = 0.
 - c) Déduire dans £ les solutions de l'équation : $Z^4 + (1-2i\sqrt{3})Z^2 2 + 2i\sqrt{3} = 0$.
- **3)** Le plan complexe est rapporté à un repère orthonormé direct (O, u, v). On considère les points $A_{(1)}$, $B_{(-2+2i\sqrt{3})}$ et C d'affixe Z_C tel que $Re(Z_C) = \frac{5}{2}$ et $arg(Z_C) = \frac{\pi}{3}[2\pi]$.
 - a) Placer les points A, B et C (laisser les traces de constructions apparentes).
 - **b**) Calculer $|Z_C|$ puis déduire que $Z_C = \frac{5}{2} (1 + i \sqrt{3})$.
- **4) a)** Prouver que $\frac{Z_B Z_A}{Z_C Z_A} = e^{i\frac{\pi}{3}}$.
 - **b**) Déduire alors la nature du triangle ABC (Justifier) .

EXERCICE N: 4 (5.5 points)

- I) Soit m un nombre complexe non nul. Résoudre dans \mathbb{C} l'équation : Z^2 - 2 i m Z - (1 + m^2) = 0.
- II) On suppose dans cette question que m est un réel . Le plan complexe est rapporté à un repère orthonormé direct $R(O, \vec{u}, \vec{v})$. On considère les points A, M_1 et M_2 d'affixes respectives : $Z_0 = i$, $Z_1 = i$ m + 1 et $Z_2 = i$ m - 1
 - **1)** Vérifier que : $OM_1 = OM_2$.
 - **2**) Montrer que (OA) est la médiatrice du segment $[M_1M_2]$.
 - **3**) Déterminer les valeurs de m , pour lesquelles le triangle OM_1M_2 est équilatéral .
- **III)** On suppose dans cette question que : $\mathbf{m} = -i e^{2i\theta}$ où $\theta \in]0$, $\frac{\pi}{2}[$.
 - **1**) **a**) Déterminer la forme exponentielle de $\,{\sf Z}_1\,$ et $\,{\sf Z}_2\,$ en fonction de $\, heta\,$.
 - **b**) Donner une mesure de l'angle orienté ($\overrightarrow{OM_1}$, $\overrightarrow{OM_2}$) en fonction de θ .
 - **c**) Déduire la nature du triangle OM_1M_2 .
 - **2)a)** Montrer que $\frac{OM_2}{OM_1} = tg(\theta)$.
 - **b**) Déduire la valeur de $\,\theta\,$ pour laquelle $\,{\it OM}_1{\it M}_2\,$ est isocèle $\,$.

