LYCÉE GHANNOUCH 13 – 11 – 2017

BAC SCIENCE

DEVOIR DE CONTRÔLE N°: 1

PROF: TAIEB

MATHÉMATIQUES

DURÉE: 2H

EXERCICE N°: 1 (6 POINTS)

- 1) a) Vérifier que $(1-2\sqrt{3}i)^2 = -11 4i\sqrt{3}$
 - b) Résoudre dans \mathbb{C} l'équation $z^2 z + 3 + i\sqrt{3} = 0$
 - c) Mettre les solutions sous forme exponentielle.
- 2) Dans le plan complexe rapporté à un repère orthonormé $(0, \vec{u}, \vec{v})$,

On donne les points A, B et M d'affixes respectives : $z_A=i\sqrt{3}$; $z_B=1-i\sqrt{3}$ et $z_M=\sqrt{3}e^{i\theta}$; $\theta\varepsilon$] $\frac{\pi}{2}$, $\frac{3\pi}{2}$ [

- a) Montrer que $z_M z_A = 2i\sqrt{3}\sin(\frac{\theta}{2} \frac{\pi}{4})e^{i(\frac{\theta}{2} + \frac{\pi}{4})}$ en déduire la distance AM en fonction de θ .
- b) Déterminer θ pour que le triangle OAM soit isocèle en A.
- 3) Atout point M d'affixe z tel que $z \neq i\sqrt{3}$ on associe le point M' d'affixe z' tel que : $z' = i(\frac{z-1+\sqrt{3}i}{z-i\sqrt{3}})$
- a)Montrer que pour tout $z \neq i\sqrt{3}$ on a : $|z'| = \frac{BM}{AM}$ et $\arg(z') \equiv \frac{\pi}{2} + \left(\overrightarrow{AM}, \overrightarrow{BM}\right)[2\pi]$
- b) Déterminer les deux ensembles suivants :

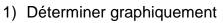
$$E = \{M(z) \in P/|z'| = 1\}$$
 et $F = \{M(z) \in P/z' \text{ imaginaire}\}$

EXERCICE N°: 2(5 POINTS)

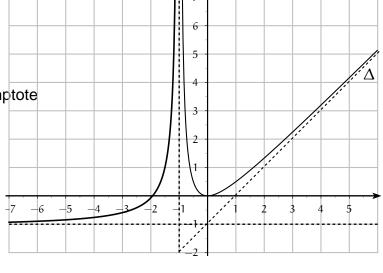
La courbe ci-dessous représente une fonction

f définie et continue sur IR/{-1} qui admet :

- La droite Δ : y=x-1 comme asymptote oblique au voisinage de (+∞)
- La droite Δ': y=-1 comme asymptote
 au voisinage de (-∞)
- La droite d'équation x=-1 comme asymptote verticale à Cf



- a) $\lim_{x \to +\infty} f(x)$; $\lim_{x \to -\infty} f(x)$ et $\lim_{x \to +\infty} (f(x) x + 1)$
- b) $\lim_{x \to -1} f(x)$.En déduire $\lim_{x \to -\infty} f(\frac{-x+1}{x+1})$
- c) $\lim_{x\to +\infty} \frac{f(x)}{x}$. En déduire $\lim_{x\to +\infty} \frac{f(x^2)}{x}$
 - 2) Soit la fonction $g: x \mapsto \frac{1}{\sqrt{f(x)}}$
 - a) Déterminer l'ensemble de définition de g



- b) Montrer que q est prolongeable par continuité en -1
- 3) a) Montrer que la fonction f o f est définie sur IR /{-1}
- b) Déterminer $\lim_{x \to +\infty} (f \circ f)(x)$; $\lim_{x \to -\infty} (f \circ f)(x)$ et $\lim_{x \to +\infty} \frac{f \circ f(x)}{f(x)}$

EXERCICE N°: 3 (4 POINTS)

Soit f la fonction définie sur IR par
$$f(x) = \begin{cases} x\left(\sin\left(\frac{1}{x}\right) - 1\right) + 1 & \text{; si } x < 0 \\ x^3 - 3x + 1 & \text{; si } 0 \le x \le 1 \\ \sqrt{x^2 - x} - x & \text{; si } x > 1 \end{cases}$$

- f(x) = -1/2. Interpréter graphiquement le résultat 1) a) Montrer que $\lim_{x\to +\infty}$ obtenu.
 - b) Calculer $\lim_{x \to -\infty} f(x)$
- 2) a) Montrer que pour tout x < 0, on a: $1 \le f(x) \le -2x + 1$.
 - a) En déduire $\lim_{x\to 0^-} f(x)$ puis montrer que f est continue en 0.
 - b) Montrer que f est continue en 1.
- 3) a) Montrer que l'équation f(x)=0 admet une **unique** solution α dans]0,1[
 - b) Montrer que $\alpha = \frac{1}{3-\alpha^2}$

EXERCICE N°: 4 (5 POINTS)

Soit la suite (u_n) définie par : $u_0 = 0$ et $\forall n \in IN, u_{n+1} = \frac{1 + 2u_n}{2 + u}$

- 1) a)Montrer par récurrence que pour tout $n \in IN$, $0 \le u_n \le 1$
 - **b)** Montrer que la suite (u_n) est croissante.
 - c)En déduire que la suite (un) est convergente et déterminer sa limite.
- **2) a)** Montrer que pour tout $n \in IN$, $0 \le 1 u_{n+1} \le \frac{1}{2}(1 u_n)$
 - **b)** En déduire que pour tout $n \in IN$, $0 \le 1 u_n \le \left(\frac{1}{2}\right)^n$ puis retrouver $\lim_{n \to +\infty} u_n$.
- **3)** Soit la somme $S_n = \sum_{k=1}^n u_k, \ n \ge 1$
 - a) Montrer que pour tout entier $n \ge 1$, $n-1 + \left(\frac{1}{2}\right)^n \le S_n \le n$
 - **b)** Déterminer alors $\lim_{n\to+\infty} S_n$ et $\lim_{n\to+\infty} \frac{S_n}{n}$.

BON TRAVAIL