Mathématiques

Lycée Ibn Rochd Menzel Bourguiba

Devoir de contrôle n°1

3 ème math

Mardi :03-11-2015

Durée: 120 minutes

Prof: WALID Jebali

Exercice 1:(6points)

Soit la fonction f définie par :
$$f\left(x\right) = \begin{cases} \frac{x^2 + 2x + 1}{x + 1} & \text{si } x \in]-\infty; -1[\\ \frac{|x|}{2} + \frac{1}{2} & \text{si } x \in [-1; 0[\\ \frac{\sqrt{1 + x} - 1}{x} & \text{si } x \in]0; +\infty[\end{cases}$$

- 1) Déterminer le domaine de définition de f
- 2) Etudier la continuité de f en (-1).
- 3) a/ Calculer $\lim_{x\to 0^+} f(x)$ et $\lim_{x\to 0^-} f(x)$ b/ f est-elle continue en 0 ? c/ f est-elle prolongeable par continuité en 0 ? si oui donner ce prolongement.
- 4) Montrer que f est minorée par 0 et majorée par $\frac{1}{2}$ sur $]0;+\infty[$.
- 5) Montrer que f est décroissante sur]0;+∞[
- 6) Soit g la fonction définie sur IR par : $g(x) = \begin{cases} \frac{x^3 + x}{2x} & \text{si } x \in]-\infty; 0[\\ \frac{1}{2} & \text{si } x = 0\\ f(x) & \text{si } x \in]0; +\infty[\end{cases}$
 - a) Montrer que g est continue en 0.
 - b) Montrer que l'équation $g(x) = \frac{1}{4}x$ admet dans]1;2[une unique solution α

Exercice 2 :(4points)

Dans la figure 1 en Annexe on a la representation graphique C_f d'une fonction définie sur $\begin{bmatrix} -1,5 \end{bmatrix}$.

- 1) Calculer graphiquement : f(-1) et f(5)
- 2) Préciser les intervalles ou f est continue
- 3) Calculer graphiquement: f(2) et $\lim_{x\to 2^+} f(x)$ et $\lim_{x\to 2} f(x)$
- 4) Déterminer f([-1,2]) et f([0,2]).
- 5) Discuter suivant le paramétre m le nombre des solutions de l'équation f(x) = m.
- 6) Préciser les intervalles ou la fonction h = |f| est continue et tracer sa courbe.
- 7) Déterminer graphiquement h([0;3])

Exercice3:(4points)

ABCD est un carré direct tel que $AB = a\sqrt{3}$ et E un point du segment $\begin{bmatrix} AB \end{bmatrix}$ tel que $ADE = \frac{\pi}{6}$ et AEG un triangle rectangle isocèle en A (**Voir figue 2 annexe**)

- 1) Calculer $\overrightarrow{DA}.\overrightarrow{DE}$.
- 2) Déduire le calcul de DE et monter que AE = a
- 3) Montrer que $(DE) \perp (BG)$
- 4) Soit O le milieu de [AC].
 - a) Montrer que pour tout point M du plan on a : $MA^2 + MC^2 = 2MO^2 + \frac{AC^2}{2}$.
 - b) Déterminer alors et construire l'ensemble des points M du plan tel que : $MA^2 + MC^2 = 9a^2$
- 5) On considère le repère orthogonal direct $(A, \overrightarrow{AG}, \overrightarrow{AE})$
 - a) Déterminer les composantes des vecteurs \overrightarrow{BG} et \overrightarrow{DE} puis déduire que $(DE) \perp (BG)$

Exercice 4:(3points)

La figure 3 en annexe représente un cercle trigonométrique de centre A ;ABC et ADE sont deux triangles équilatéraux et ACD rectangle en A.

- 1) Déterminer la mesure principale de chacun des angles : $(\overrightarrow{AB}, \overrightarrow{AE})$; $(\overrightarrow{AB}, \overrightarrow{EB})$; $(\overrightarrow{DE}, \overrightarrow{BC})$.
- 2) Montrer que : \overrightarrow{DC} et \overrightarrow{EB} sont colinéaires.
- 3) Montrer que : \overrightarrow{EA} et \overrightarrow{CB} sont orthogonaux.
- 4) Montrer que : $(\overrightarrow{AC}, \overrightarrow{ED}) = \frac{-119\pi}{6} [2\pi]$

Annexe à rendre avec la copie

Nom et prénom :..... numéro :......

QCM:(3points)

Pour chacune des questions suivantes une seule de trois réponses proposées est exacte. Entourer la réponse exacte

- 1) ABC est un triangle tel que :AB=2, AC=3 et $\overrightarrow{AB} \overrightarrow{AC} = 4$ alors ABC est rectangle en a) A b) B
- 2) Soient A et B deux points du plan l'ensemble $\{M \in P\}$ tel que $\overrightarrow{MA} \cdot \overrightarrow{AB} = 1$ est
 - a) une droite
- b) un cercle
- c) un segment
- 3) MNP un triangle et I le milieu de [MN] tel que PI = MN = 4 alors : $\overline{PM} \cdot \overline{PN} = 1$ a) 12
- 4) L'ensemble de définition de la fonction $f: x \mapsto \frac{1}{E(x) 2012}$ est :
 - a) IR*
- b) *IR* \{2012}
- c) $]-\infty, 2012[\cup [2013, +\infty[$

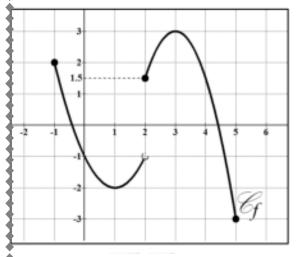


Figure 1

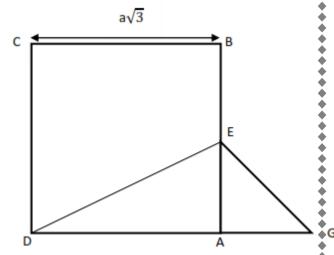


Figure 2

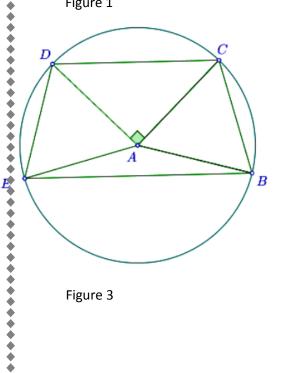


Figure 3