Lycée Zarat

K: Moncef

31/10/2010

3 ieme Maths

2h

Devoir de contrôle N°:1 Mathématiques

Exercice N°1 (3pts)

Cochez la bonne réponse

1/ L'équation $3\sqrt{x-2} - x + 5 = 0$ admet au moins une solution dans

- a) [6,11]
- b) [11,18]
- c) [18,27]

2/ La mesure principale de l'angle oriente $(\overrightarrow{AB}, \overrightarrow{AC}) \equiv \frac{317\pi}{7} [2\pi]$ est égale à

- a) $\frac{-5\pi}{7}$

3/ soit la fonction $f(x) = \frac{1}{\sqrt{1-x}} + \frac{1}{x}$; le domaine de définition de f est

- a) [1,+∞[
- b) $[-1,+\infty[\setminus \{0\}]$
- c)]- ∞ , 1[\ {0}

4/soit \overrightarrow{U} , \overrightarrow{V} et \overrightarrow{W} trois vecteurs si on a : \overrightarrow{U} . \overrightarrow{V} = \overrightarrow{U} . \overrightarrow{W} .

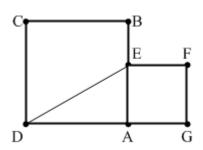
- a) $\overrightarrow{V} = \overrightarrow{W}$ b) \overrightarrow{U} et ($\overrightarrow{V} \overrightarrow{W}$) sont orthogonaux c) \overrightarrow{U} et ($\overrightarrow{V} \overrightarrow{W}$) sont colinéaires

Exercice N°2 (7pts)

ABCD et AEFG sont deux carrés comme l'indique la figure ci-contre qu'il faut la reproduire sur votre copie.

On donne $AB = \sqrt{3}$ et E le point du segment [AB] tel que $\widehat{ADE} = \frac{\pi}{6}$.

- 1 / Calculer $\overrightarrow{DA}.\overrightarrow{DE}$, En déduire DE et montrer que AE = 1
- 2/ a Calculer \overrightarrow{AE} . \overrightarrow{BA} et \overrightarrow{DA} . \overrightarrow{AG}
 - b Montrer que les droites (DE) et (BG) sont perpendiculaires



- 3 / Calculer BE; BD et \widehat{BDE} puis déduire $\cos\left(\frac{\pi}{12}\right)$
- a- Soit O le milieu de [AC]. Montrer que pour tout point M du plan on a : $MA^2 + MC^2 = 2MO^2 + \frac{AC^2}{2}$
 - b Déterminer et construire l'ensemble des points M du plan tels que $MA^2 + MC^2 = 6$

(on donne: $\cos\frac{\pi}{6} = \sin\frac{\pi}{3} = \frac{\sqrt{3}}{2}$)

Exercice N°3 (3pts)

On considère dans le plan orienté, un triangle ABC équilatéral de sens direct. Et soit $D = S_B(A)$

1/Déterminer la mesure principale de chacun des angles orientés $(\widehat{BD}, \widehat{BC}), (\widehat{DC}, \widehat{DB})$ et $(\widehat{CA}, \widehat{DB})$

2/ Montrer que le triangle ADC est un triangle rectangle en C.

Exercice N°4 (7pts)

Les deux parties A et B sont indépendantes

A/ Soit la fonction f définie $f(x) = (x+1)\sqrt{x-2}$

- 1/ Déterminer le domaine de définition D de f
- 2 / Etudier la continuité de f sur D
- 3/ a) Démontrer que f est strictement croissante sur D
 - b)En deduire que f admet un minimum sur D
- 4/ a) Montrer que l'équation f(x) = 2 admet au moins une solution $\lambda \in]2,5$; 3[

b)En déduire que
$$\lambda = \frac{2}{\sqrt{\lambda - 2}} - 1$$

B/ Soit la fonction définie sur]- ∞ , 0] par : g(x) = 1+ $\frac{1}{\sqrt{1-x}}$

- 1/ Etudier la parité de g sur $]-\infty$, 0]
- 2/ Montrer que g est minorée sur $\left]-\infty$, $0\right]$
- 3/ Montrer que g admet un maximum en 0 sur $]-\infty$, 0]
- 4/ En déduire que g est bornée sur $]-\infty$, 0]