REPUBLIQUE TUNISIENNE MINISTERE DE L' EDUCATION ET DE LA FORMATION 參泰泰泰

DEVOIR DE CONTROLE N:1

LYCEE SECONDAIRE

AJIM JERBA

B BRAHIM KHALED

EPREUVE : MATHEMATIQUES COEFFICIENT : 4 NIVEAU ET SECTION : 3° M

Premier trimestre Date : 13 novembre 2009 Durée : 2 heures

EXERCICE 1 (QCM: 04 points)

Pour chacune des quatre questions de ce QCM, une seule des trois affirmations est exacte.

Indiquer laquelle sans justification.

Soit f la fonction définie sur]0;+ ∞ [par : $f(x) = \frac{x^2 + 1}{x}$

On désigne par (C) la courbe représentative de f dans un repère ortho normal.

1) La fonction f est ...

(a): paire

(b): impaire

(c) : ni paire, ni impaire

2) La courbe (C) a pour asymptote oblique la droite d'équation ...

(a): x = 0

(b): y = x

(c): y = x + 1

3) Sur l'intervalle [1;+ ∞ [, la fonction f est ...

(a): croissante

(b): constante

(c): décroissante

4) L'image de l'intervalle]0;2] par la fonction f est ...

(a) :]2;+∞[

(b): [2;+∞[

(c) : [2.5;+∞[

EXERCICE 2 (05 points)

A et B sont deux points distincts et O est le milieu de segment [AB].

1) Démonstration du théorème de la médiane :

Démontrer que pour tout point M, on a : $MA^2 + MB^2 = 2MO^2 + \frac{1}{2}AB^2$.

2) ABCD est un quadrilatère.

I et J sont les milieux respectifs de [AC] et [BD].

a. Appliquer le théorème de la médiane aux triangles ABC, ACD et IBD.

b. En déduire que : $AB^2 + BC^2 + CD^2 + DA^2 = 4IJ^2 + AC^2 + BD^2$.

c. Euler affirmait : " la somme des carrés des cotés d'un quadrilatère est supérieure ou égale à la somme des carrés des diagonales."

Peut-on avoir égalité ? Dans quelle situation ?

EXERCICE 3 (03 points)

Le plan est orienté dans le sens direct.

Soit ABC un triangle équilatéral direct

O est un point de la médiatrice de segment [AB] tel que $(\overrightarrow{AC}, \overrightarrow{AO}) = \frac{19\pi}{2} [2\pi]$.

1) a. Donner la mesure principale de l'angle orienté $(\overrightarrow{AC}, \overrightarrow{AO})$.

b. Faite une figure.

2) Déterminer et construire l'ensemble E des points M tels que $(\overrightarrow{AM}, \overrightarrow{BM}) = \frac{\pi}{3}[2\pi]$.

3) Montrer que les points A, B, C, O sont situés sur un même cercle.

EXERCICE 4 (08 points)

Soit f la fonction définie sur IR par :

$$f(x) = \begin{cases} x^3 + x - 1 & \text{si} \quad x \le 1 \\ x - \sqrt{x - 1} & \text{si} \quad x > 1 \end{cases}$$

On désigne par (C) la courbe représentative de f dans un repère ortho normal.

- 1) a. Montrer que la courbe (C) possède en $(-\infty)$ une branche parabolique que l'on précisera.
 - b. Calculer $\lim_{x\to +\infty} f(x).$ Interpréter graphiquement le résultat obtenu.
- 2) Etudier la continuité de f sur IR.
- 3) Montrer que f est strictement croissante sur] $-\infty$;1].
- 4) Quelle est l'image par f de l'intervalle]0;1[?
- 5) a. Montrer que l'équation f(x) = 0 admet une unique solution α dans l'intervalle]0;1[.
 - b. Donner la valeur approchée par défaut de α à 10^{-1} prés.

