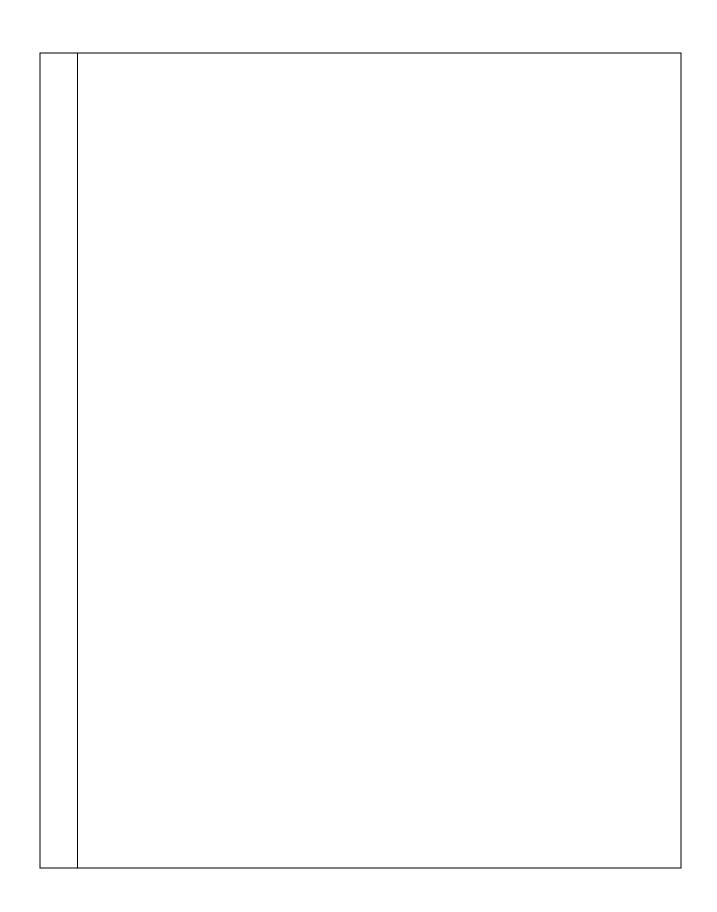

Lycée Mateur		Devoir de contrôle n° 1	Mr : Amri Lotfi	
A.S: 2011 – 2012		(Mathématiques)	Classe: 3Maths	
		15 – 11 – 2011 Durée :2h		
\mathcal{N} . \mathcal{B} : le sujet comporte 3 pages				
	: Il sera tenu compte de la bonne rédaction et de la présentation			
	de la copie			
	Exercice n°1: (4pts	<u>s)</u>		
	I) Pour les questions 1 ; 2 et 3 , trois réponses sont proposées, une seule réponse est correcte . Indiquez le numéro de la question et la lettre correspondante à la réponse choisie			
1	1) Soit f une fonction définie sur $\mathbb{R} \setminus \{3\}$ et telle que $\lim_{x \to 3^+} f(x) = -2$			
_	et $\lim_{x\to 3^-} f(x) = -2$. Alors:			
	a) f est prolor	ngeable par continuité en 3		
	b) $f(3) = -2$			
1	c) f est continue en 3 2) ABC étant un triangle .Alors l'ensemble des points M du plan tel que \overrightarrow{AB} . $\overrightarrow{AM} = \overrightarrow{AB}$. \overrightarrow{AC} est : a) Le point {C} b) Le cercle de centre A et de rayon AC			
	c) La droite passant par C et perpendiculaire à (AB)			
	3) Soit f la foncti	on définie par $f(x) = \frac{E(x)}{(x-2)^2}$. Alors le domaine de	
1	continuité de f est :	(* 2)		
	a) ℝ \{2}	b) ℝ	c) $\mathbb{R} \setminus \mathbb{Z}$	
	II) Dans le plan rapporté à un repère orthonormé ($O; \vec{i}; \vec{j}$) C_f est la courbe			
0.25	d'une fonction f définie sur]-∞; 2[. Rependre par Vrai ou Faux			
0.25		continuité de f est] -∞; 2]\ nimum de f sur D _f	\{-2}	
0.25		minum de 1 sur D _†		
0.25	4) (F 2 2] F 1	3]		

Exercice n° 2: (3pts)

On considère une fonction f définie et continue sur [-2;5] et dont le tableau de variation est le suivant :

- 0.75
- 1) a) Montre que f admet un minimum en 1 sur [-2;5]
- 0.75
- b) Déduire que f est bornée sur [-2;5]
- 1
- 2) Montrer que l'équation f(x) = -2 admet exactement deux solutions sur [-2;5]
- 0.5
- 3) Sachant que f(0) = 0 et f(3) = 0. Donner le tableau de signe de f(x)

Exercice n° 3: (5pts)


Soit f la fonction définie sur $\mathbb R$ par

$$f(x) = \begin{cases} \frac{2x^2 - 2x - 4}{x^2 - 1} & \text{si} \quad x < -1\\ \frac{\sqrt{x^2 + 3} - 2}{x - 1} & \text{si} \quad -1 \le x < 1\\ -x^2 + 2x - \frac{1}{2} & \text{si} \quad x \ge 1 \end{cases}$$

- 0.5
- 1) Calculer f(-1) et f(1)
- 0.75
- 2) Montrer que f est continue sur chacun des intervalles]- ∞ ; -1[; [-1; 1[et [1; + ∞ [
- 0.75
- 3) Etudier la continuité de f en (-1)
- 0.5
- 4) a) Montrer que pour tout $x \ne 1$ on a $\frac{\sqrt{x^2 + 3} 2}{x 1} = \frac{x + 1}{\sqrt{x^2 + 3} + 2}$

0.75	b) Etudier la continuité de f en 1			
0.75	c) Déduire le domaine de continuité de f			
0.5	5) a) Montrer que l'équation $f(x) = 0$ admet dans [1;2] une solution α			
0.5	b) Vérifier que $1.5 < \alpha < 2$			
	Exercice n°4: (8pts)			
	Soit ABCD un rectangle du plan tel que : $AB = 4$ et $AD = 2$. On désigne par I et J les points respectivement des segments [AB] et [AD] tels que $AI = AJ = 1$			
	Soient $F = D * C$ et $\{E\} = (DI) \cap (AC)$ D C			
0.5	1) Calculer DI			
0.5	2) a) Calculer $\overrightarrow{AD}.\overrightarrow{AC}$			
0.75	b) Montrer que $\overrightarrow{AD}.\overrightarrow{AC} = \overrightarrow{AI}.\overrightarrow{AC}$ A B			
0.5	c) En déduire que (DI) ⊥ (AC)			
0.75	3) a) Montrer que \overrightarrow{DI} . $\overrightarrow{DA} = \overrightarrow{DE}$. \overrightarrow{DI}			
0.5	b) En déduire la distance DE			
	4) Soit $\mathcal{C} = \{ M \in P \text{ tel que } MC^2 + MD^2 = 16 \}$			
0.5	a) Vérifier que E ∈ ℓ			
1	b) Déterminer et construire l'ensemble C			
	5) soit $\Delta = \{ M \in P / MF^2 - ME^2 = 4 \}$			
	a)Montrer que pour tout point M du plan on a :			
1	MF^2 - $ME^2 = EF^2 + 2\overrightarrow{ME}.\overrightarrow{EF}$			
0.5	b) Vérifier que E ∈ Δ			
1	c) Déterminer et construire l'ensemble Δ			
0.5	d) Montrer que Δ est tangent à $\boldsymbol{\mathscr{C}}$			
	Bon travail			

