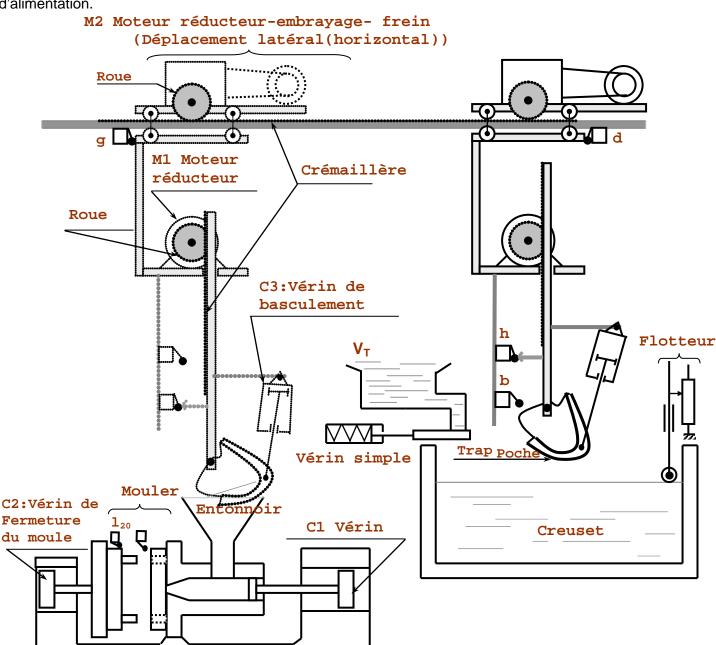
المندوبية الجهوية للتربية بالقصرين

DEVOIR DE CONTROLE N°3

Epreuve : Technologie Durée : 4 heures

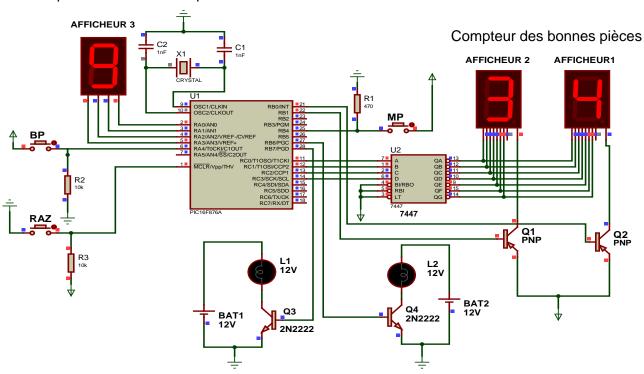

SECTION: 4ème SCIENCES TECHNIQUES

Réalisé par : Mr RAOUAFI - A

SYSTEME AUTOMATIQUE DE MOULAGE

I- PRESENTATION:

Le système représenté ci-dessous permet de mouler des pièces sous pression dans un moule alimenté par une poche à partir d'un bac contenant du métal (Aluminium) en fusion arrivant d'un four d'alimentation.


II- CONSTITITION:

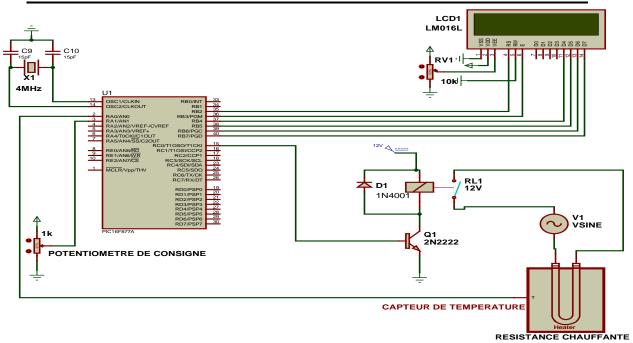
Le système ci-dessus est constitué principalement :

- D'un moteur M1 à deux sens de marche entraînant la poche verticalement.
- D'un moteur M2 et un système pignon crémaillère entraînant la poche horizontalement.
- D'un vérin d'injection (C1).
- D'un vérin de fermeture du moule (C2).
- D'un vérin de basculement de la poche (C3)

III- COMPTAGES DES PIECES PRODUITES:

Compteur des mauvaises pièces

Les pièces moulées sont triées en deux catégories


- Pièces bonnes qui sont détectées par un capteur BP.
- Pièces mauvaises qui sont détectes par un capteur MP.

Les bonnes pièces sont emballées par lot de 100 et qui sont comptées le compteur TMR0 qui s'incrémente a chaque front montant sur la broche <u>RA4</u> (Elle est reliée au capteur <u>BP</u>) du microcontrôleur 16F876A; la formation d'un lot de100 bonnes pièces moulées est signalée par la lampe <u>L2</u> qui s'allume pendant une **seconde** pour informer l'employeur.

Les mauvaises pièces sont comptées par un compteur qui s'incrémente à chaque changement d'état de la broche **RB4** (Interruption externe via le **port b**) qui est reliée au capteur **MP**.

La formation d'un lot de <u>10 pièces</u> est signalée par une lampe <u>L1</u> qui s'allume pendant 5s pour avertir l'employeur qui va intervenir en appuyant sur le bouton **RAZ** pour arrêter le système puis le réparer.

IV- CONTROLE ET COMMANDE DE LA TEMPERATURE DU FOUR:

La résistance chauffante du four d'alimentation est commandée par un PIC 16F877A comme indique la figure ce dessus.

La résistance chauffante envoie a travers le capteur de température une tension proportionnelle a la température du four d'une manière que 5000mV correspond a 250°C

L'operateur fixe la valeur de la température au quelle on désire chauffer le four on agissant sur un potentiomètre de consigne d'une manière 5000mV correspond a 250°C aussi

Le microcontrôleur en recevant le deux tensions à travers ces entrées analogiques AN0 et AN1 -prévenant du capteur de température (image de la température réelle du four) sur AN0.

- prévenant du potentiomètre de consigne (image de la température au on désire chauffer le four) sur AN1. Il convertit ces deux tensions en deux nombres puis en deux valeurs correspondantes de température

(**Tf** : pour la température réelle du four et **TC** : pour la température imposée par l'operateur à travers le potentiomètre)

Le microcontrôleur réalise l'opération suivante erreur = Tc-Tf.

Si erreur est supérieure a zéro on donne ordre de chauffer le four a travers la broche RC0 qui commande le four a travers un relais électromagnétique RL1, sinon on donne l'ordre d'arrêter le chauffage.

Cette opération se réalise d'une manière contenue tant que le système fonctionne.

Sur un afficheur LCD, les valeurs des températures doivent être affichées de la manière suivante.

NB: Un afficheur LCD LM 016L comporte 2 lignes

V- PRODUCTION D'UNE SOLUTION DE MODIFICATION:

Au lieu d'utilisé une commande numérique pour commander et contrôler la température du four ; on utilise la carte électronique suivante qui permet une commande et un contrôle analogique

Etage 1 Etage 3 Etage 4 Source _O+15 +15 +10 ALI1 R_B Vc R2 ALI3 ∞ -15V 2R R_{F} Four R Etage 2 Sonde thermique K=0,25V/°C +15 $_{\infty}$ ALI2 Vx -15V

VI- ANNEXE:

1- -Configuration registre ADCON1:

	ADFM : Bits de sélection du format de résultat de conversion Analogique / Numérique
Bit 7	1 = Justifié à droite. Les 6 bits de poids fort du registre ADRESH sont lus comme '0'
	0 = Justifié à gauche. Les 6 bits de poids faible du registre ADRESL sont lus comme '0'
Bit 6:4	Non implémentés : Lire comme '0'
Bit 3:0	PCFG3:PCFG0 : Configuration des E/S et des tensions de références.

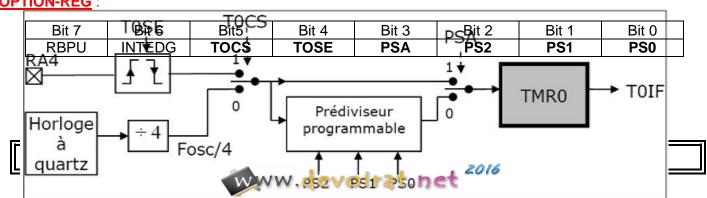
Ces bits permettent de choisir le partage entre entrées analogiques et digitales sur les PORTS A et E. Ils permettent également de choisir pour V_{REF+} entre V_{DD} et RA3 et pour V_{REF-} entre V_{SS} et RA2.

PCFG30	RE2	RE1	RE0	RA5	RA3	RA2	RA1	RA0	V_{REF+}	V_{REF}
0000	Α	Α	Α	Α	Α	Α	Α	Α	V_{DD}	V_{SS}
0001	Α	Α	Α	Α	V_{REF+}	Α	Α	Α	RA3	V_{SS}
0010	D	D	D	Α	Α	Α	Α	Α	V_{DD}	V_{SS}
0011	D	D	D	Α	V_{REF+}	Α	Α	Α	RA3	V_{SS}
0100	D	D	D	D	Α	D	Α	Α	V_{DD}	V_{SS}
0101	D	D	D	D	V_{REF+}	D	Α	Α	RA3	V_{SS}
011x	D	D	D	D	D	D	D	D	V_{DD}	V_{SS}
1000	Α	Α	Α	Α	V_{REF+}	V_{REF}	Α	Α	RA3	RA2
1001	D	D	Α	Α	Α	Α	Α	Α	V_{DD}	Vss
1010	D	D	Α	Α	V_{REF+}	Α	Α	Α	RA3	V_{SS}
1011	D	D	Α	Α	V_{REF+}	V_{REF}	Α	Α	RA3	RA2
1100	D	D	D	Α	V_{REF+}	V_{REF}	Α	Α	RA3	RA2
1101	D	D	D	D	V_{REF+}	V_{REF}	Α	Α	RA3	RA2
1110	D	D	D	D	D	D	D	Α	V_{DD}	V_{SS}
1111	D	D	D	D	V_{REF+}	V_{REF}	D	Α	RA3	RA2
			,							

Ces entrées n'existent pas sur le 16F876.

A : broche configurée en entrée analogique.

D : broche configurée en entrée ou en sortie numérique.


2- Configuration registre INTCON:

INTCON					BIT3			
INTCON	GIE	EEIE	T0IE	INTE	RBIE	T0IF	INTF	RBIF

Bit 7	GIE	Global Interrupt Enable : autorise toute les sources d'interruption
Bit6	EEIE	EEPROM Interrupt Enable : Interruption à la fin d'écriture sur l'EEPROM
Bit5	TOIE	Timer0 Overflow Interrupt Enable : Interruption suite au débordement du Timer0
Bit4	INTE	RB0 Interrupt Enable : autorise l'Interruption sur RB0
Bit3	RBIE	PortB Interrupt Enable : autorise l'interruption suite au changement de RB47
Bit2	T0IF	Timer0 Overflow Interrupt Flag : drapeau mis à 1 suite au débordement du Timer0 (ff-00)
Bit1	INTF	RB0 Interrupt Flag : drapeau mis à 1 si l'interruption sur RB0 est active
Bit0	RBIF	PortB Interrupt Flag : drapeau mis à 1 si l'interruption sur RB47 est active

3- Configuration registre Option_reg:

OPTION-REG:

*RBPU: mode Pull up: Ce bit est utilisé sauf si le port B est configuré en entrée (TRISB = 0)

-RBPU = 1 : le mode est désactivé (portb fonctionne avec la logique positive : 1)

-RBPU = 0 : le mode est activé (portb fonctionne avec la logique négative : 0)

*INTEDG : choisir le type du front de RBO/INT pour provoquer une interruption

-INTEDG = 1 : front montant sur RB0

-INTEDG = 0 : front descendant sur RB0

*TOCS : choisir la source d'horloge du TMR0 (ou le mode de fonctionnement)

-TOCS = 1 : l'horloge externe (RA4) « mode compteur »

-TOCS = 0 : l'horloge interne « mode temporisateur »

*TOSE : choisir le type du front de RA4 en mode compteur

-TOSE = 0 : le TMR0 s'incrémente à chaque front montant sur RA4

-TOSE = 1 : le TMR0 s'incrémente à chaque front descendant sur RA4

*PSA: Affecter le Pré-diviseur

-PSA = 0 : le pré-diviseur est affecté au watchdog

-PSA = 1 : le pré-diviseur est affecté au TMR0

*PS2, PS1 et PS0 : choisir le pré-diviseur selon le tableau suivant

PS0	0	1	0	1	0	1	0	1
PS1	0	0	1	1	0	0	1	1
PS2	0	0	0	0	1	1	1	1
Pré-diviseur	2	4	8	16	32	64	128	256

4- Tableaux code ASCII des caractères :

67- 63-64 -60	0000	0010	0011	0100	0101	0110	0111	1010	1011	1100	1101	1110	1111
0000	CG/ RAM /(1)		0	Ð	P	~	F=-			9	≡	O.	р
0001	(2)	ļ.	1	H	Q	-≣3	~	E!	T	3 -	i	ä	q
0010	(3)	**	2	В	R	Ь	! ~	Г	4	ij	>	ß	8
0011	(4)	#	3	C	5	C.	≝.	_i	ņ	Ŧ	モ	8	60
0100	(5)	\$	4	D	T	d	<u>t</u> .	٠.	I	 -	†7	J. .4	Ω.
0101	(6)	7.	5	Ε	U	⊜	u	=	才	ナ	1	Ġ	ü
0110	(7)	8.	6	F	Ų	f.	Ų	ij	Ħ		==	ρ	Σ
0111	CG/ RAM	7	7	G	IJ	9	W	77	#	72"	7	ġ	π
1000	CG/ RAM/	<	8	-	X	h	×	4	9	菜	Ų	Ţ	$\overline{\times}$
1001	(2))	9	I	Υ	i.	' =1	7	丁	J	ıb	-:	Ч
1010	(3)	*	#	J	Z	j	ZZ.	II:		ı'n	1/	j	7
1011	(4)		;	K	Ε.	k	{	才	#			×	Fi
1100	(5)	,	<	L	145	1		17	5,	Ţ	ŋ	4-	12:1
1101	(6)		===	M		m	>		Z	^	_,	#_	÷
1110	(7)		>	Ы	-^-	m	-)-	=3	也	:†;	••	ñ	
1111	CG/ RAM/		?	O		\Box	4	123	닛	77	121	ö	

	Section	on :							. Cla	sse :	:			1	۷° :	Г		
×	Nom e															···· L		
En s	DE DE C se référan r le type d	t au so	chém	na stru	ıcture	l de		le de	e com	ptag	e voi	r doss	sier te	chniqı	ıe paş	ge 2 :		(0.25pt)
2- Que se p	oasse t il si	on ap	opui s	sur le	bouto	on R/	AZ :											(0.25pt
<u> </u>	le type et	: le rôl	le de	chac	un de	s tra	nsisto	rs su	ivant	s :								(1pt)
Tra	ansistors			Q1				Q2				Q3			V	Q4		
	Rôle	e												·······				
	Тур	e																
4- Quel est	le rôle du	CI 74	47 ;															(0.25pt
5- Identifie	r le type d	les aff	iche	urs uti	ilisés _l	oour	le cor	npta	ge de	s bo	nnes	pièce	s:					(0.25pt
6- Complét	er la confi	igurati	ion d	es reg	gistres	TRI	S corr	espo	ndan	t à n	otre a	pplic	ation	:		•		(1.5pts
TRISA		RA5	RA4	RA3	RA2	RA	I RAC		Ţ	RISB	RB7	RB6	RB5	RB4	RB3	RB2	RB1	RB0
					RC7	RC6	RC5	RC4	RC3	RC	2 R	M I B	CO					
			ŢF	RISC														
	tage des r tiver cette														uivan	te :		(0.25pt
INTO	CON			•••												=\$		
b- Si l'inte	rruption e	st en	cours	s d'ex	écutio	on ce	regis	tre p	rend	auto	matio	quem	ent la	comb	inaisc	n sui	vante	: (0.25pt
INTO	CON															=\$		
c- Pour so	rtir de l'in	terrup	otion	et re	venir	au p	rograr	nme	princ	ipal	il fau	t écri	re la c	combii	naisor	suiv	ante:	(0.25p
INTO	CON															=\$		
8- Le comp	tage des k Montant															.g:		(0.5pt
Opti	ion_reg															=\$		
ssier pédago	ogique					•	« part	ie éle	ectric	lue »	>							Page

9- En s'aident des questions précédentes et en respectant les conditions du cahier de charge(voir dossier technique page 2), compléter le programme correspondant : (5pt)

<u>programme</u>	commentaires	<u>Programme</u>	<u>commentaires</u>
program compteur;	Nom programme		Configurer TMR0
var i ,j,k,etat,uni,dix:byte;	Déclarations des variables	j:=0;	
const		i:=0;	
aucun_afficheur :byte=3;	Déclarations des	tmr0:=0;	
afficheur_1 :byte=2;	constantes	while true do	
afficheur_2 :byte=1;		begin	
procedure interrupt ;		i :=tmr0;	
etat:=portb;		if tmr0=99 then	
	. Afficher contenu Compteur sur portA	begin	
j:=j+1;		portb.6:=1;	
if j=10 then			Pause 1s
begin		portb.6:=0;	Eteindre la lampe L2
	Initaliser le compteur	end;	
	Allumer L1	if tmr0=100 then tmr0:=0;	
delay_ms(5000);			Calculer les unités
portb.7:=0;		dix:=(i div 10)mod 10;	
end;		for k:=0 to 10 do	
	Desactiver le Flag	begin	
end;		portb:= aucun_afficheur;delay_ms(1)	Désactiver les afficheurs Pendant 1ms
begin		portc:=uni;portb:= afficheur_1; delay_ms(10);	
			Désactiver les afficheurs Pendant 1ms
	Configuration des Registres TRIS	portc:=dix;portb:= afficheur_2; delay_ms(10);	Afficher les dizaines
		end;	
intcon:=\$;	Activer l'interruption	end;	
	Initialiser les sorties	end.	
	PortA numérique		

II- ETUDE DE CONTROLE ET (COMMANDE NUMERIQUE DE LA TEMPERATURE :	
	page 3 trouver la relation entre la tension V(mV) et la température T	T(ºC) : (0.75pt)
2- Trouver la relation entre V et N(résu	ultat de la conversion),en déduire celle de la température et N.	(0.75pt)
		(0.75pt)
ADCON1	=\$	
4- Compléter alors le programme qui po		(4pts)
program four;	Commentaires	
var	connections de l'afficheur Lcd	
LCD_RS: sbit at RB2_bit; LCD_EN: sbit at RB3_bit;		
LCD_EN : sbit at RB3_bit, LCD D4 : sbit at RB4_bit;		
LCD_D5 : sbit at RB5_bit;		
LCD_D6 : sbit at RB6_bit;		
LCD_D7 : sbit at RB7_bit;		
LCD_RS_Direction : sbit at TRISB2_bit;		
LCD_EN_Direction : sbit at TRISB3_bit;		
LCD_D4_Direction: sbit at TRISB4_bit; LCD_D5_Direction: sbit at TRISB5_bit;		
LCD_D6_Direction: sbit at TRISB6_bit;		
LCD_D7_Direction : sbit at TRISB7_bit;		
valeur_conversion : word ;		
variable_calcul :;	4 octets pour le calcul pour ne pas avoir un dépassement de taille l	lors de
	la multiplication	
Tc, Tf,erreur :;	1 octet car la température est comprise entre 0 et 250	
valeur_afichage : string[3];		
begin		
trisc:=0; portc:=0;		
	initialisation de l'afficheur LCD	
LCD_cmd(_LCD_CURSOR_OFF);		
ADCON1:=\$;		
;	initialisation du convertisseur CAN	
LCD_out(1,1,'Tf:');		
LCD_out(2,1,'Tc:');		
while true do		
begin		
valeur_conversion := adc_read(0);	lecture de la consigne de température Tf	
variable_calcul :=		
Tf:= byte(variable_calcul);		
byteToStr(Tf,valeur_afichage);	conversion de la température calculée en texte	
lcd_out(1,4,valeur_afichage);	affichage de la température Tf	
lcd_chr(1,7,%11011111);	affichage du symbole degré: °	

lcd_chr(1,8,'C');	// affichage de C pour Celsius					
valeur_conversion :=	// lecture de la consigne de température Tc					
variable_calcul := (valeur_conversion * 250)/1023 ;						
Tc:=;						
byteToStr(Tc,valeur_afichage);	conversion de la température calculée en texte					
<pre>lcd_out(2,4,valeur_afichage);</pre>	affichage de la température Tc					
lcd_chr(2,7,);	affichage du symbole degré: °					
lcd_chr(2,8,'C');	affichage de C pour Celsius					
erreur :=;	calcul de l'erreur					
if erreur >0 thenelse;						
end;						
end.						

III- ETUDE DE CONTROLE ET COMMANDE ANALOGIQUE DE LA TEMPERATURE :

En se référeront, dans cette partie, au schéma structurel de la page 5 du dossier technique.

1- Mettre une croix devant la bonne réponse: (1.5pts)

	Pola	risation	Rég	ime	Boucle		
	Asymétrique	Symétrique	linéaire	Saturé	Ouvert	Fermé	
ALI1							
ALI2							
ALI3							

2-	Exprimer Va en fonction de Vc et Vx : (1.5pt)		
		-	, +15V
		Vc R2	+ D ALI1 Va
2	En déduire la fonction réalisée par ALI1 : (0.5pt)	vx	-15V /m
	Lindedulie la lolicuolinealisee pai ALIT : (0.5pt)	ı	R
			<i>Am</i>
5- 	Exprimer Vx en fonction de Vt : (1.5pts)	[2R o +15V
			R Note that the second
		Vx	+
		m	-15V M
6-	En déduire la fonction réalisée par ALI2 : (0.5pt)		

« partie électrique »