REPUBLIQUE TUNISIENNE

MINISTERE DE L'EDUCATION

LYCEE SECONDAIRE 9 AVRIL 1938 - TUNIS

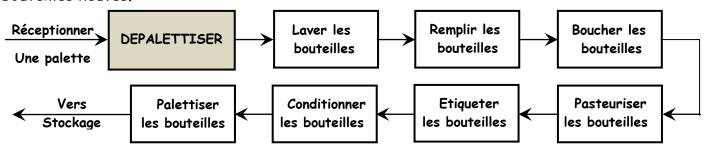
DEVOIR DE SYNTHESE N°1

DISCIPLINE : TECHNOLOGIE

Durée: 4 H | Coefficient:4

Classe: 4 Sciences Technique

Le sujet est composé:


- D'un dossier technique : ----- 6 pages ;
- D'un dossier réponses mécanique : ----- 4 pages ;
- D'un dossier réponses électrique : ----- 4 pages.

N.B: Aucune documentation n'est autorisée. L'utilisation de la calculatrice est permise.

SYSTEME : DEPALETTISEUR

I MISE EN SITUATION.

Dans une usine de fabrication de boissons gazeuses, la chaîne de production comprend les différents postes énumérés ci-dessous. L'étude sera orientée vers le poste de « dépaléttisation » des bouteilles neuves.

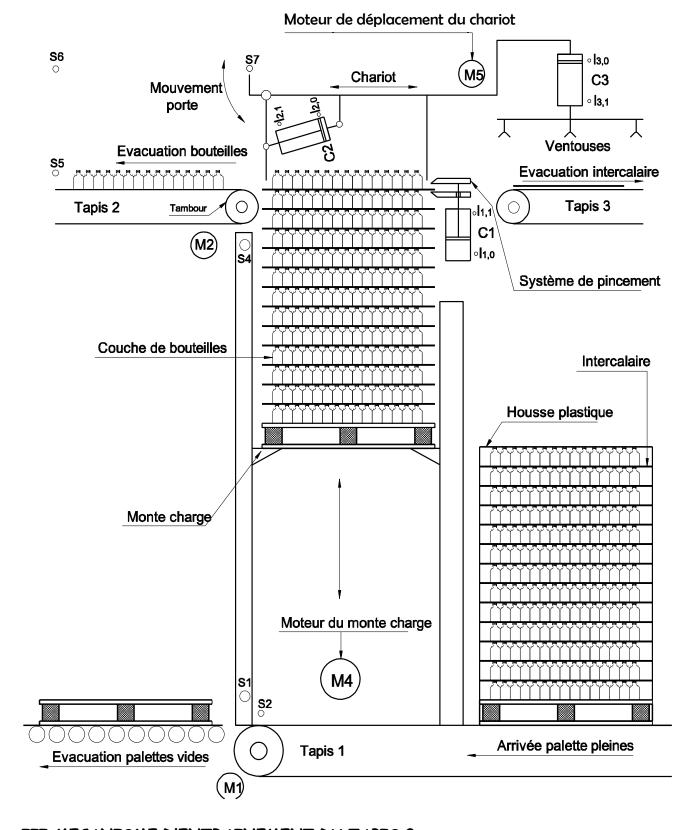
2-Description du fonctionnement du « dépalettiseur »

- ♦ Avant de rentrer dans l'ensemble « dépalettiseur », la housse plastique, ainsi que le premier intercalaire sont enlevés manuellement. La palette chargée par des bouteilles vides, arrive sur le monte-charge qui la soulève.
- ♦ Lorsque la première couche (lit de bouteilles) se présente sous le chariot, les bouteilles seront poussées horizontalement par ce dernier sur le tapis d'évacuation N°2.
- ♦ Un système de pincement retient l'intercalaire pendant le déplacement du lit de bouteilles. Une porte ventouse, <u>solidaire</u> au chariot, aspire l'intercalaire pour le déposer, au retour du chariot, sur un convoyeur (tapis n°3) où il rejoint un bac de stockage.
- ♦ Puis, la palette est levée de la hauteur d'une couche de bouteilles, les opérations de pousser un lit, d'aspirer un intercalaire se répètent jusqu'à ce que la palette sera vide. Celle-ci descend pour être évacuée ; poussée par une nouvelle palette pleine de bouteilles neuves.

Remarque: \rightarrow Les deux tapis N°2 et N°3 fonctionnent en permanence ;

- ightarrow Le dispositif d'entraı̂nement du tapis N°2 est composé par :
 - Un moteur (M2) équipé d'un réducteur ;
 - D'un tambour d'entraînement de la bande (tapis).

<u>Légende</u>:

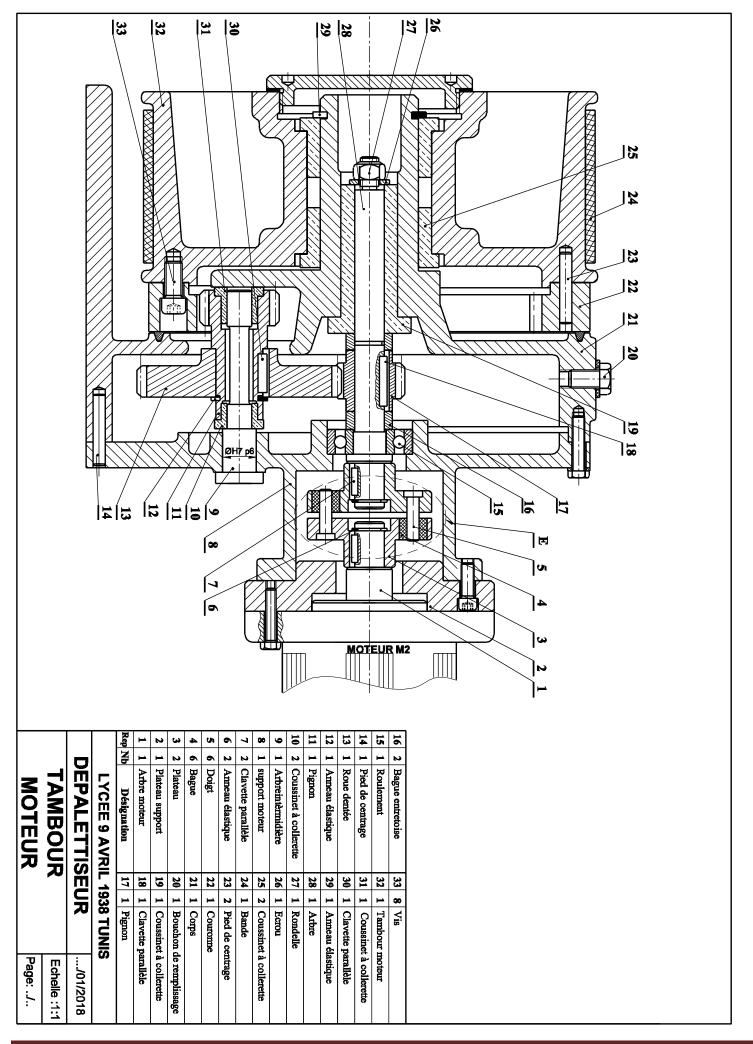

<u>Palettiser</u>: Empiler sur un plateau pour permettre le transport de plusieurs bouteilles;

<u>Dépalettiser</u>: décharger les palettes (Vider les bouteilles).

Devoir de synthèse N°1 4 Sci. Tech. Janvier 2018 Page 1 sur 7

SYSTEME: DEPALETTISEUR Lycée Secondaire 9 Ayril de TUNIS (Ex LTT)

II. SCHEMA DE PRINCIPE DU DEPALETTISEUR.


III. MECANISME D'ENTRAINEMENT DU TAPIS 2

1) Description du mécanisme d'entraînement

Le dessin d'ensemble de la page 3/7 du dossier technique, représente le mécanisme d'entraînement du tapis roulant (24); La transmission de la rotation de l'arbre moteur (1) vers le tambour (32); solidaire à la couronne (22) est réalisée par :

- > Accouplement élastique
- Réducteur à engrenages cylindriques (17 ; 13) et (11 ; 22) de même entraxe.

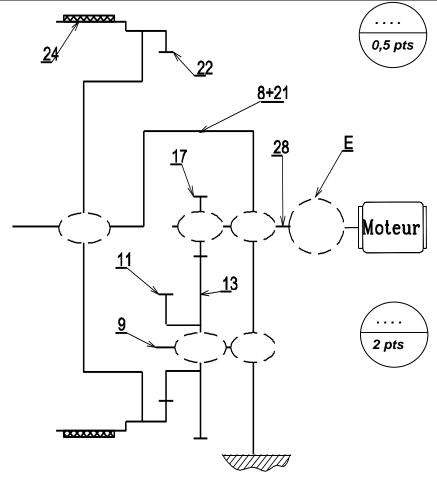
Devoir de synthèse N°1 4 Sci. Tech. Janvier 2018 **Page 2 sur 7**SYSTEME : DEPALETTISEUR **Lycée Secondaire 9 Ayril de TUNIS (Ex LTT)**

Devoir de synthèse N°1 4 Sci. Tech. Janvier 2018 **Page 3 sur 7**SYSTEME : DEPALETTISEUR **Lycée Secondaire 2 Ayril de TUNIS (Ex LTT)**

www.devoirat.net

NOM:	Prénom :	4STN°	/00
ARTIF MECANIQUE			/20

1) Analyse structurelle


1-1) Compléter le Tableau ci-dessous en inscrivant les fonctions techniques ou les composants manquants.

FONCTION	COMPOSANTS									
	Accouplement élastique 2, 4pts									
	(3) ;(4) ;(5) ;(6) et (7)									
Guider l'arbre (28) en rotation par rapport aux corps										
(21) et support moteur (8)										
Transmettre le mouvement de rotation au pignon (11)										
Lier la roue (13) au pignon (11)										
, , , ,										
	2 Coussinets à collerette									
	(10) et (31)									
	Pignon (11)									
	Couronne (22)									
Lier la couronne (22) au Tambour (32)										
, ,										
Guider le Tambour (32) en rotation par rapport au										
corps (21)										
_										

1-2) L'organe de liaison (E) est un accouplement élastique, justifier son utilisation.

Justification:.......

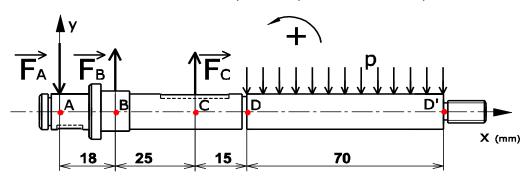
1-3) Compléter le schéma cinématique ci-contre

Devoir de synthèse N°1


4 Sci. Tech.

Janvier 2018

Page 4 sur 7


SYSTEME: DEPALETTISEUR Lycée Secondaire & Ayril de TUNIS (Ex LTT)

Sachant que cylindriques La vitesse d	e le nombre des dents d à denture droite et de e rotation du moteur M	tir d entrainement de tap de la roue (17) est Z₁₇= 13 même module <i>m= 2mm.</i> 2 est Nm= 720 tr/mn . grenage (17,13) : r ₍₁₇₋₁₃₎ =	dents et que toute	es les roues dentées	sont
Le rapport d	e transmission de l'enç	grenage (11,22) : r ₍₁₁₋₂₂₎ =1, es roues (13), (11) et (22)	/5.	1,5pts	5
	Z ₁₃ =	7.4 =	Z ₂₂ =		
					0,5pts
2-2) Calcule	r le rapport global (rg)	du réducteur			_ `
				rg =	
					<i>□(</i> `
2-3) Calcule	r la vitesse de rotation	du tambour (32) N ₃₂			0,5pts
				N ₃₂ =	
2-4) Calcule	r la vitesse d'évacuatio	n des bouteilles (le diame	ètre du tambour (32	··[t) est d=180mm)	
•			•	•	0,5pts
3- Etude de	montage du pignon ((11)			
-	•	itions : 🔈 Ja		,	0,75pts
		3c Jc			3,7 3,410
•	. 0	chaînes des cotes relative	s aux conditions Ja	et Jc	
3-3) D'apres	la chaine de cote rela	tive a la condition Jb	+0.6		<i></i>
Calculer la c	ote tolérancée b8 de la	a pièce (8) Jb= 2^{\pm}	· · · · · · · · · · · · · · · · · · ·		1,25pts
				b ₈ =	.

4) ETUDE DE FLEXION PLANE SIMPLE :

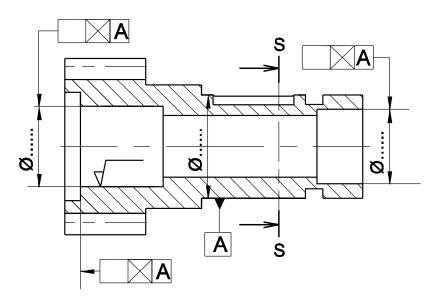
L'arbre (28) est assimilé à une poutre cylindrique de diamètre extérieur d=23 mm, il est en acier E255 pour lequel $R_e=255$ MPa et le coefficient de sécurité s=3; représenté par le modèle statique ci-dessous :

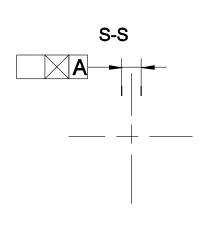
On donne:

$$\left\|\overrightarrow{F_{A}}\right\| = 3140N \text{ } \left\|\overrightarrow{F_{B}}\right\| = 1200N \text{ } \left\|\overrightarrow{F_{C}}\right\| = 4040N \text{ } \text{ et la répartition linéique } \textbf{p = 30 N/mm,}$$

A	·	-		- '	\cdot \parallel	B			0 0	- '	;	-c				, _ ,	Ct	iu	СР	ui ti	cioi		icic	140				•,		•,							
⁻ A 4-1)	Ca	lcul	er I	a v	aria	atio	n d	es	mo	me	nts	flé	chi	ssa	ant	le l	ong	g de	e la	рс	utr	е е	et tr	rac	er	cet	te	vai	riat	ion	า รเ	ır u	ın c	gait	ıram	nme	€.
																																		···	··	<u></u>	
																																		_	_		
										• • •									• •			• •	• •	• •		• •	• •	•	• •							• •	•
					٠.		• •																														

Devoir de synthèse N°1 4 Sci. Tech. Janvier 2018 **Page 6 sur 7**SYSTEME: DEPALETTISEUR **Lycée Secondaire 2 Ayril de TUNIS (Ex LTT)**


Mf (Nm)


Echelle des moments 1mm 3,5Nm
Echelle des longueurs 1mm 2mm

X
(mml)

4-2) Vérifier si la poutre résiste en toute sécurité ou non.

- **<u>5)</u> Dessin de définition** Sur le dessin de définition ci-dessous de pignon (11)
 - 5-1) Compléter les sections de sortie S-S
 - 5-2) Reporter les cotes fonctionnelles déduites des conditions Ja et Jc
 - **5-3)** Compléter les spécifications géométriques ainsi que les tolérances des cotes indiquées et La condition d'état de surface

Devoir de synthèse N°1

4 Sci. Tech.

Janvier 2018

Page 7 sur 7

3,6 pts

Lycée Secondaire & Ayril de TUNIS (Ex LTT)