Exercice N°1

On considère la suite de terme général $F_n = (1 + \frac{1}{n^2}) (1 + \frac{2}{n^2}) (1 + \frac{3}{n^2}) \dots (1 + \frac{n}{n^2})$ avec n1

1-Vérifier que $F_n>0$ pour tout n1. Dans la suite on pose $P_n=ln(F_n)$

2- Soit Q= $\int at^2 + bt + c dt$

a-Déterminer les réels a, b et c pour que Q=k²

b-Déduire alors $S_n = \sum_{1}^{n} k^2$

3-a-Démontrer que pour tout x>0 : $x - \frac{x^2}{2} \le ln (1 + x) \le x$

b-En déduire $\frac{n+1}{2n} - \frac{(n+1)(2n+1)}{12n^3}$

4-Montrer alors que P_n et F_n sont convergentes et déterminer leurs limites

Exercice N°2

Soit fune fonction numérique continue sur (0,1) et dérivable sur (0,1) On suppose que :

$$f(0)=1$$
 et $f'(x)=\frac{-2}{\pi\sqrt{1-x^2}}$

1-a-On pose pour tout $x \in \left(0, \frac{\pi}{2}\right) g(x) = f(\cos x)$

Montrer que g est dérivable sur $\left(0, \frac{\pi}{2}\right)$ et déterminer sa dérivé

b- Montrer alors que que $g(x)=\frac{2}{\pi}x$ puis calculer f(1)

c-Montrer que g réalise une bijection de (0,1) sur (0,1) puis calculer $f^{-1}(x)$ pour tout $x \in (0,1)$

2- On pose pour tout $x \in \left(0, \frac{\pi}{2}\right)$ $h(x)=f(\cos x) + f(\sin x)$

a- Calculer h'(x) pour tout $x \in \left(0, \frac{\pi}{2}\right)$

b- En déduire que h(x) = k où k est une constante à déterminer

Exercice N°3

On considère l'équation (E): 25x-49y=5; où x et y sont des entiers relatifs

1-a- Déterminer le PGCD de 49 et 25à l'aide de l'algorithme d'Euclide et en déduire que l'équation (E) admet des solutions entières.

b-Déterminer une solution particulière de (E) puis achever sa résolution.

c-Montrer qu'il existe un unique entier p compris entre 1960 et 2018 tel que 25p5(49).

- 2-a-Justifier que si (x,y) est une solution de (E) alos $5x1(7)et y \equiv 0(5)$.
 - b-Monter que 5x1(7)si et seulement si $x \equiv 3(7)$.
- 3-a-Soit x un entier relatif. Quels sont les restes de x² dans la division euclidienne par 7?
 - b-Existe-t-il un couple (x,y) d'entiers relatifs tel que (x^2,y^2) soit solution de (E).

Exercice N°4

- 1-a- Résoudre l'équation différentielle (E): y"-6y+8y=0
- c- Déterminer la solution y_0 de (E) dont la courbe passe par le point A(0,-1) et admet en ce point une tangente horizontale
- 2- Soit f la fonction définie sur R par $f(x)=e^{4x}-2e^{2x}$ et Csa courbe représentative dans un repère orthonormé $(o, \rightarrow i, \rightarrow j)$.
 - a- Calculer et interpréter les limites suivantes $\lim_{x\to -\infty} \mathcal{F}(x)$, $\lim_{x\to +\infty} \mathcal{F}(x)$ et $\lim_{x\to +\infty} \frac{\mathcal{F}(x)}{x}$
 - b- Dresser le tableau de variation de f.
- 3- Soit g la restriction de f sur l'intervalle $I=(-\infty,0)$.
 - a- Montrer que g réalise une bijection de l'intervalle I sur un intervalle J que l'on déterminera.
- Kamel Bel Asri Calculer et interpréter $\lim_{x\to -1}\frac{g^{-1}(x)}{x+1}$ où g^{-1} désigne la réciproque de g.
 - c- Soit \mathbf{C}' la courbe de \mathbf{g}^{-1} . Montrer que \mathbf{C} et \mathbf{C}' se coupent en un unique point B d'abscisse α tel que -0.6 < α < -0.5.
 - d- Tracer dans un même repère les courbes C etC'
 - e- Donner l'expression de g-1(x)
 - 4- Soit S l'aire de la partie du plan délimitée par les courbes C , C' et les axes de coordonnées
 - a- Montrer que $S=2\int (x-f(x)dx$.
 - b- Calculer la valeur de S en fonction de α et en donner une valeur approchée à 10^{-2} près.