RÉPUBLIQUE TUNISIENNE MINISTÈRE DE L'ÉDUCATION

Lycée Ibn Charaf

SUJET DE RÉVISION N°10 – MATHÉMATIQUES

SECTION: MATHÉMATIQUES Proposé par : Mr. Maayoufi

Questions préliminaires :

Indiquer, en le justifiant, la réponse exacte :

1. $\lim_{x\to +\infty} x^2 e^{-x}$ égale à :

a/0

 $h/+\infty$

 $C/-\infty$

2. Sur \mathbb{R}_+^* , la dérivée de la fonction $f: x \mapsto \frac{e^x}{x}$ égale à :

 $a / \frac{e^x}{x(1+e^x)}$

 $b / \frac{e^{x}(x+1)}{x^{2}}$ $c / \frac{x-1}{x^{2}e^{-x}}$

3. La fonction $f: x \mapsto \frac{e^x + 2}{e^x - 2}$ est:

a/ paire

b/ impaire

c/ ni paire, ni impaire.

4. Soit ABC un triangle d'aire \mathscr{A} et h une homothétie de rapport $-\sqrt{2}$, si \mathscr{A}' est l'aire de la triangle ABC par h alors on a \mathscr{A}' égale à :

a/. ≪

 $b/-\sqrt{2}$

c/ 2. X

Exercice 1:

Dans le plan orienté, ABCD est un rectangle tel que : $(\overrightarrow{AB}, \overrightarrow{AD}) = \frac{\pi}{2}[2\pi]$ et AB = 2AD. On désigne par I, J et K les milieux respectives de [AB], [AI] et [AD] et par \(\Delta \) la médiatrice de [ID].

- I- Soit f la similitude qui transforme B en I et I en D.
 - 1) Déterminer le rapport de f et montrer que $-\frac{\pi}{4}$ est une mesure de son angle.
 - 2) Soit s la similitude directe de centre C, de rapport $\sqrt{2}$ et d'angle $-\frac{\pi}{4}$.
 - **a-** Montrer que S(B) = I.
 - **b-** Montrer que $f \circ s^{-1} = id_p$.
 - C- Déterminer la nature de triangle ICD.
- Soit σ la similitude indirecte qui transforme D en B et de centre A.
 - 1) Déterminer le rapport de σ . Déduire la forme réduite de σ .
 - **2)** Montrer que $\sigma(J) = D$.

- 3) Soit $\varphi = \sigma \circ S_{(AD)}$.
 - **a-** Caractériser φ.
 - **b-** Déterminer l'ensemble des points N du plan tel que : $\varphi(N) = \varphi(A)$.

Exercice 2:

On pose pour x > 0, $f(x) = \int_1^x \frac{e^t}{t} dt$.

- 1) Justifier que f est strictement croissante sur]0; $+\infty[$.
- 2) a Montrer que si $x \ge 1$, $f(x) \ge \frac{e^x e}{x}$.
 - **b** En déduire : $\lim_{x \to +\infty} f(x)$ et $\lim_{x \to +\infty} \frac{f(x)}{x}$.
- 3) a Montrer que si $x \le 1$, $f(x) \le e^x \ln x$.
 - **b** En déduire $\lim_{x\to 0^+} f(x)$.
- 4) a Dresser le tableau de variations de f.
 - **b** Tracer C_f.

Exercice 3:

Page: 2/3

I – Soit g la fonction définie sur \mathbb{R}_+^* par : $g(x) = 1 + x^2 - 2x^2 \ln x$. On note C_g sa courbe représentative dans un R.O.N (O, \vec{i} , \vec{j}). (figure ci-contre).

abscisses en un seul point A d'abscisse α tel que $\alpha \in \left]$ 1,8 ; 1,9[.

c – Résoudre graphiquement g(x)=0, g'(x)=0 et $g'(x) \le 0$.

b - Montrer que :
$$I_{\alpha} = \frac{1}{18}(\alpha^3 + 3\alpha + 2)$$
.

c – En déduire la valeur \bar{g} de la fonction g sur $[1; \alpha]$.

II – Soit f la fonction définie sur]0;
$$+\infty$$
[par: $f(x) = \frac{\ln x}{1+x^2}$.

Section: Mathématiques

1) Montrer que f'(x) =
$$\frac{g(x)}{x(1+x^2)^2}$$
.

2) Dresser le tableau de variations de f.

3) Montrer que :
$$f(\alpha) = \frac{1}{2\alpha^2}$$
.

4) Tracer C_f.

III – Soit H la fonction définie sur
$$\mathbb R$$
 par : $H(x) = \int_{e^{-x}}^{e^x} f(t) dt$.

- 1) Montrer que H est dérivable sur \mathbb{R} et calculer H'(x).
- 2) Déduire que H(x) = 0 pour tout réel x.
- 3) Soit ${\mathfrak D}$ la partie du plan limitée par C_f , l'axe des abscisses et les droites d'équations x=1 et x=e et soit ${\mathfrak D}'$ la partie limitée par C_f , l'axe de abscisses et les droites d'équations $x=\frac{1}{e}$ et x=1.

3-1- Hachurer \mathcal{D} et \mathcal{D}' .

3-2- Calculer
$$I = \int_{1/e}^{e} f(t) dt$$
. En déduire que $\boldsymbol{\mathcal{D}} = \boldsymbol{\mathcal{D}}'$.

$$\mathbf{IV} - Soit \ (u_n) \ la \ suite \ définie \ par \ : \ u_n = \int_n^{n+1} f(t) dt, \ n \geq 2 \ .$$

- 1) Montrer que : $f(n+1) \le u_n \le f(n)$.
- 2) En déduire que (u_n) est décroissante.
- 3) Montrer que (u_n) est convergente et calculer $\lim_{n\to +\infty}(u_n)$.

Page: 3 / 3 Section: Mathématiques | Pr. Maayoufi

