L.KAYRIDINE JANOURA MR: AMMAR BOUAJILA

ANGLES ORIENTE'S

GSM :92 741 567

3^{éme} MATHS

2015/2016

EXERCICE N°1

 $(\overrightarrow{OA}, \overrightarrow{OB})$ est un angle orienté de deux vecteurs du plan orienté P tel que $(\overrightarrow{OA}, \overrightarrow{OB}) = -\frac{2003\pi}{5}$ [2 π].

1/ Déterminer la mesure principale α de $(\overrightarrow{OA}, \overrightarrow{OB})$.

2/ Le réel $\beta = \frac{1303}{5}\pi$ est-il une mesure de $(\overrightarrow{OA}, \overrightarrow{OB})$?

3/ Soit C un point du plan tel que $\widehat{(OA, OC)} = -\frac{1098\pi}{5}$ [2 π]. Montrer que [OC)=S_O([OB)).

EXERCICE N°2

Soit ABC un triangle isocèle de sommet principal A tel que

 $\widehat{(\overline{BA};\overline{BC})} = -\frac{19\pi}{5}$ [2 π]. Désignons par I le milieu de [BC].

1/ Le réel $\frac{89\pi}{5}$ est-il une mesure de $(\overrightarrow{CA}; \overrightarrow{CB})$?

2/ Déterminer θ la mesure principale en radian de $(\overrightarrow{CA}; \overrightarrow{CB})$.

3/ Soit D le symétrique de B par rapport à A.

a) Montrer que BDC est un triangle rectangle en C.

b) Donner une mesure de $(\overrightarrow{DB}; \overrightarrow{DC})$

4/ Soit E le point tel que $\overrightarrow{DE} = \overrightarrow{CB}$. Montrer que $(\overrightarrow{EB}; \overrightarrow{EC}) = \frac{3}{10}\pi$ [2 π].

EXERCICE N°3

On donne un triangle ABC tel que $\widehat{\left(\overrightarrow{BC},\overrightarrow{BA}\right)} = \frac{5\pi}{21}$ [2 π] et

 $\widehat{(CA, CB)} = \frac{\pi}{3}$ [2 π]. Soit le triangle ABE isocèle en B tel

que $\widehat{\left(\overrightarrow{BA},\overrightarrow{BE}\right)} = \frac{3\pi}{7}$ [2 π]. Soit aussi le triangle ACD

rectangle en C, de sens direct et $\widehat{\left(\overrightarrow{DC},\overrightarrow{DA}\right)} = -\frac{3\pi}{14}$ [2 π].

1/ Montrer que $(\overrightarrow{AE}, \overrightarrow{AB}) = \frac{2\pi}{7}$ [2 π].

2/ Prouver que E, A et D sont alignés.

EXERCICE N°4

Dans le plan orienté P dans le sens direct, on considère le triangle ABC tel que

$$\widehat{\left(\overrightarrow{\mathsf{AB}};\overrightarrow{\mathsf{AC}}\right)} = -\frac{95\pi}{7} \quad [2\pi] \ \text{et} \ \widehat{\left(\overrightarrow{\mathsf{BA}};\overrightarrow{\mathsf{BC}}\right)} = \frac{138\pi}{7} \quad [2\pi].$$

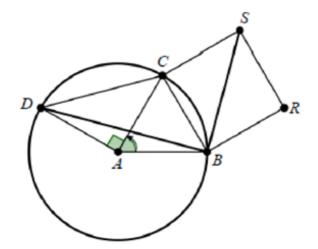
- 1/ Donner les mesures principales de $(\overrightarrow{AB}; \overrightarrow{AC})$ et $(\overrightarrow{BA}; \overrightarrow{BC})$.
- 2/ Calcculer $(\overrightarrow{CA}; \overrightarrow{CB})$; déterminer la nature du triangle ABC.
- 3/ Posons I le milieu de [BC]. Soit E le point de P vérifiant : $E \in \Delta$ la médiatrice de [BC] et $\widehat{(EB;EI)} = \frac{3\pi}{28}$ [2 π]. Le cecle $\mathcal C$ de centre A et passant par B coupe [IA) en N. Montrer que E = N.

EXERCICE N°5

Dans le plan orienté dans le sens direct, on considère un cercle Γ de centre A et de rayon 4. Soient B, C et D trois points de (C) tels que

$$\widehat{(\overline{AB},\overline{AC})} = \frac{\pi}{3} [2\pi] \text{ et } \widehat{(\overline{AC},\overline{AD})} = \frac{\pi}{2} [2\pi]$$

On considère le carré BRSC. (Voir figure ci-dessous)



- 1) Déterminer une mesure de chacun des angles orientés : $(\overrightarrow{AB}$, \overrightarrow{AD}) et $(\overrightarrow{BS}$, \overrightarrow{BA}).
- $\mathbf{2}$) \mathbf{a} Déterminer une mesure de l'angle orienté (\overrightarrow{DB} , \overrightarrow{DC}).

b – En déduire que
$$\widehat{(\overline{DA}, \overline{DB})} = \frac{\pi}{12}$$
 [2 π]

- 3) Déduire de ce qui précède que (BS) \perp (DB).
- 4) Déterminer l'ensemble E des points M vérifiant $(\overline{MC}, \overline{MB}) = -\frac{\pi}{6}$ [2 π].

EXERCICE N°6

Soit ABC un triangle rectangle en A et de sens direct tel que

$$\widehat{\left(\overrightarrow{\mathrm{CA}};\ \overrightarrow{\mathrm{CB}}\right)} \equiv \frac{1999\pi}{3} [2\pi].$$

- **1/a**) Montrer que la mesure principale de $(\overrightarrow{CA}; \overrightarrow{CB})$ est $\frac{\pi}{3}$
 - b) faire une figure.

2/ Désignons par I le milieu du segment [BC], J est le point d'intersection de la médiatrice de [AI] et celle de [BC].

a) Prouver que $\frac{\pi}{6}$ est la mesure principale de chacun des angles orientés $\left(\overrightarrow{CA}; \overrightarrow{CJ}\right)$ et $\left(\overrightarrow{CJ}; \overrightarrow{CI}\right)$.

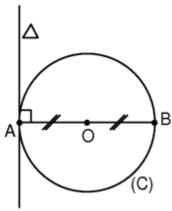
b) Montrer alors que $\widehat{\left(\overrightarrow{JB};\overrightarrow{JA}\right)} = \pi [2\pi]$.

3/ Désignons par D le point d'intersection de (CJ) et le cercle circonscrit au triangle ABC. Prouver que DBA est un triangle isocèle en D.

EXERCICE N°7

Choisir la bonne proposition.

Dans le plan P orienté dans le sens direct on considère la figure ci-dessous: (C) est le cercle de diamètre [AB], Δ est la perpendiculaire à (AB) en A.



E={M∈ P /	[AB)\{A}	[AB]\{A,B}	[AB)	PA \{A,B}	(C)\{A,B}	Δ
$\overrightarrow{MA}.\overrightarrow{AB} = 0$ }						
$\overrightarrow{AM}.\overrightarrow{AB} = AM \times AB $						
$\widehat{\left(\overline{AM},\overline{AB}\right)} = 0 [2\pi] $						
$\widehat{\left(\overline{MA},\overline{MB}\right)} \equiv \pi [2\pi] $						
$\widehat{\left(\overline{MA},\overline{MB}\right)} = \frac{\pi}{2}[2\pi]$						
$\widehat{\left(\overrightarrow{MA}, \overrightarrow{MB}\right)} = \frac{\pi}{2} + k\pi;$ $avec \ k \in \mathbb{Z} \ \}$						