Exercice 1

Déterminer le domaine de définition D_f de la fonction f dans chacun des cas suivants :

1)
$$f(x) = \sqrt{x} + \frac{x+3}{x-2}$$
 2) $f(x) = \frac{1}{x^2 + x - 2}$ 3) $f(x) = \frac{-3}{|x| - 2}$ 4) $f(x) = \frac{x+1}{x^2 + 4}$

$$5)f(x) = \frac{\sqrt{1-x^2}}{1-\sqrt{x+2}} \qquad 6)f(x) = \sqrt{1-\frac{4}{|x^2|}} \quad 7)f(x) = \frac{\sqrt{|x|-2}}{x+1}$$

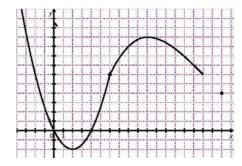
8)
$$f(x) = \frac{x^2 + 2x - 1}{2x^2 - 3x + 2}$$
 9) $f(x) = \frac{x^2 + 1}{2x^2 + 5x - 3}$ 17) $f(x) = \frac{\sqrt{x^2 + 3x + 2}}{\sqrt{-x^2 - 2x + 3}}$

Exercice 2

b. Images et antécédents

 C_f est la courbe représentative d'une fonction f.

- 1. a. Donner l'ensemble de définition de f.
 - **b.** Lire les images de : 2 ; 6 ; 8 ; 0 et 4.
 - c. Lire les antécédents de : 0 et 6.
- a. Donner l'ensemble des abscisses des points de C_f situés au dessus de l'axe des abscisses.
 - b. Quels sont les réels égaux à leurs images.
 - c. Donner le tableau des variations de f.



Exercice 3

On considère la fonction f définie sur \mathbb{R} par : $f(x) - 2f(-x) = x^6 - 2x^2$

- 1) Montrer que la fonction f est paire.
- Déterminer f(x).

Exercice 4

Soit la fonction f définie sur \mathbb{R} par : $f(x) = 3(2x+5)^2 - 4$

- 1) Montrer que $\forall x \in \mathbb{R}$ on a : $f(x) \ge -4$
- 2) Montrer que $\forall a \in \mathbb{R}$ et $\forall b \in \mathbb{R}$ on a : f(a) f(b) = 12(a + b + 5)(a b)
- 3) En déduire la monotonie de f sur les intervalles $\left]-\infty, -\frac{5}{2}\right]$ et $\left[-\frac{5}{2}, +\infty\right[$

Exercice 5

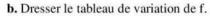
Etudier la parité des fonctions suivantes : $f(x) = 3x^4 + x^2$ $f(x) = 3x^2 - 2x + 1$

$$f(x) = -2x^2 + 3|x| - 1$$
 $f(x) = \frac{x^3 - x}{x^2 + |x|}$ $f(x) = 3x^2 - 2x$

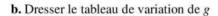
Tel97090496 Page 1

Exercice 6

 a. La fonction f, définie sur [-6, 6] est partiellement représentée (fig1), est impaire compléter la courbe de f.



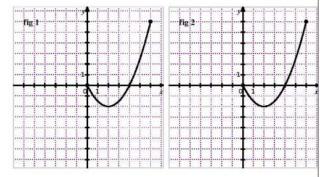
2. a. La fonction *g*, définie sur [-6, 6] est partiellement représentée (**fig2**), est paire compléter la courbe de *g*.



3.Étudier la parité des fonctions f définies sur IR par :

a/
$$f(x) = \frac{|x|}{x^2 + 1}$$

b/
$$f(x) = 5x^3 - x$$



c/
$$f(x) = 2x^2 + x$$

Exercice 7

Soit fla fonction définie sur]-2; + ∞ [par $f(x) = \frac{2x-1}{x+2}$

- 1. Déterminer deux réels a et b tels que pour tout x de]-2; $+\infty$ [, $f(x) = a + \frac{b}{x+2}$
- 2. En déduire les variations de f. (Justifier soigneusement)
- 3. Démontrer que 2 est un majorant de f(x) sur]-2; + ∞ [.

Exercice 8

Soit f définie sur \mathbb{R} par f(x) = |2-x|+2|x+2|-x

- 1. Montrer que f est une fonction affine par intervalle.
- Tracer la courbe de f dans un repère orthonormé.

Exercice 9

Soit la fonction f définie par : $f(x) = 2x^2 - 4x + 3$

- 1) Déterminer le domaine de définition D_f de f
- a) Montrer que f est strictement décroissante sur]-∞, 1]
 - b) Montrer que f est strictement croissante sur $[1, +\infty[$

Exercice 10

Soit la fonction f définie par : $f(x) = \frac{x+3}{x-1}$

- Déterminer le domaine de définition D_f de f
- Montrer que f est décroissante sur chacun des intervalles]-∞, 1[et]1,+∞[

Tel97090496 Page 2

Exercice 11

Montrer que les fonctions suivantes sont bornées, majorées ou minorées sur l'intervalle I indiqué:

a)
$$f(x) = x^2 - 3x + 2$$
 $I = [2, 3]$

a)
$$f(x) = x^2 - 3x + 2$$
 $I = [2,3]$ b) $f(x) = \sqrt{x^2 + 2}$ $I =]-\infty, 4]$

c)
$$f(x) = \frac{2x-1}{3x-2}$$
 $I = [1,3]$ d) $f(x) = \frac{2x+3}{x^2+1}$ $I = [0,2]$

$$I = [1, 3]$$

d)
$$f(x) = \frac{2x+3}{x^2+1}$$

$$I = [0, 2]$$

Exercice 12

Soit les fonctions f et g définies sur \mathbb{R} par : $f(x) = x^2 + 6x + 4$ et $g(x) = x^2$ On désigne par C_g la courbe de la fonction g et par C_f celle de la fonction f.

- 1) Montrer qu'il existe trois réels a, α et β tel que $f(x) = a(x \alpha)^2 + \beta$.
- 2) En déduire alors que $C_f = t_{\vec{u}}(C_g)$ où \vec{u} est un vecteur à préciser.
- 3) Etudier les variations de g et tracer dans le même repère C_g et C_f .
- Donner un minorant de f en justifiant la réponse.

Exercice 13

Soit la fonction f définie par : $f(x) = x^3 - 3x$

- 1) Montrer que f est impaire
- a) Soient a et b deux réels distincts, montrer que :

$$\frac{f(b) - f(a)}{b - a} = b^2 + ab + a^2 - 3$$

b) En déduire que f est croissante sur chacun des intervalles $]-\infty$, 1] et $[1,+\infty[$ et qu'elle est décroissante sur l'intervalle [-1,1]

Exercice 14

Soit la fonction f définie par : $f(x) = x^3 - 3x$

- 1) Montrer que f est impaire
- 2) a) Soient a et b deux réels distincts, montrer que :

$$\frac{f(b) - f(a)}{b - a} = b^2 + ab + a^2 - 3$$

b) En déduire que f est croissante sur chacun des intervalles $]-\infty$, 1] et $[1,+\infty[$ et qu'elle est décroissante sur l'intervalle [-1,1]

Tel97090496 Page 4

