Lycée Sidi Zekri	Devoir de synthèse n°2	Année scolaire : 2008/2009	
Lycée 7 novembre 87	Devon de synthese il 2	Classes: 4 ^{ème} Sc et M.	
	Sciences physiques	Durée : 3 heurs	

CHIMIE (7points)

Exercice n°1 (5 points)

 \boldsymbol{U} ne solution S_1 d'un acide faible AH de molarité $C_1 = 10^{-2}$ mol. L^{-1} et de volume $V_1 = 50$ mL est préparée par dilution d'un prélèvement de volume V_0 d'une solution S_0 , du même acide, de molarité $C_0 = 5.10^{-2}$ mol. L^{-1} . 1°) a- Etablir la relation entre C_0 , V_0 , C_1 et V_1 ; en déduire V_0 .

- b- Décrire le mode opératoire permettant de préparer la solution S_1 en choisissant le matériel adopté parmi les verreries suivantes :
 - * Pipette de 2 mL, de 5 mL et de 10 mL.
 - * Fiole jaugée de 20 mL, de 50 mL et de 100 mL.
 - * Eprouvette graduée de 50mL, et de 100 mL.
- 2°) On mesure à l'aide d'un pH-mètre le pH de chacune des solutions S_0 et S_1 on obtient les résultats du tableau ci-contre:
 - a- Reproduire et compléter le tableau et déduire en justifiant que l'acide AH est faible.
 - b- On donne pour une solution d'acide faiblement

Solution	S_0	S_1
C (mol.L ⁻¹)	5.10 ⁻²	10 ⁻²
pН	3,05	3,4
n(H ₃ O ⁺) mol		

dissocié

$$pH = \frac{1}{2} (pK_a - \log C)$$
. L'acide AH est un acide faiblement dissocié.

- * Déterminer le rapport $\frac{C_1}{C_0}$
- * Vérifier alors que la valeur $pH_{S_1} = 3.4$.
- c- Ecrire l'équation de la dissociation de l'acide sachant que AH est l'acide éthanoïque CH₃CO₂H.
- 3°) a- Dresser le tableau d'évolution de la réaction de dissociation, dans S₁, de l'acide éthanoïque.
 - b- Déterminer les concentrations des espèces chimiques autres que l'eau, présentes dans la solution S₁.
 - c- Déduire la valeur de la constante d'acidité pK_a du couple acide-base qui intervient.
- 4°) a- Exprimer le taux d'avancement τ_{0f} de la réaction de dissociation de l'acide relatif à la solution S_0 en fonction de son pH₀ et sa molarité C_0 .
 - b- Calculer les taux d'avancement τ_{0f} et τ_{1f} de la réaction de dissociation de l'acide relatifs respectivement aux solutions S_0 et S_1 .
 - c- Déduire l'effet de la dilution sur la dissociation de l'acide éthanoïque.
 - d- Interpréter ce résultat en utilisant les lois des équilibres chimiques.

Exercice n°2 documentaire : la régulation du pH du sang (2 points)

sont en en excès par rapport au dioxyde de carbone dissous.

Le sang humain doit avoir un pH situé entre 7,3 et 7,5Si le pH du sang du sang descend à 7,0 c'est la mort par le coma. Par contre, s'il monte jusqu'à 7,8 c'est la mort par le tétanos.

Il y a donc tout un ensemble de réactions complexes à l'équilibre qui viennent réajuster le pH du sang à une valeur constante en neutralisant les excès d'acide et de base : on appelle ce phénomène « l'effet tampon ». Le tampon bicarbonate, comme le nomment les biologistes, intervient dans la régulation du pH sanguin. Il fait intervenir le couple dont le pKa vaut 6,10 à 37°C (6,35 à 25°C).

intervenir le couple dont le pKa vaut 6,10 à 37°C (6,35 à 25°C). La relation : pH = (pKa + $log \frac{\left[HCO_3^{-}\right]}{\left[CO_2\right]_{dissous}}$) montre que dans le sang les ions hydrogénocarbonate(HCO $_3^{2-}$)

Page 1 sur 5

Un état acido-basique normal correspond à l'ajustement :

- Par les poumons de la concentration $\left[\text{CO}_2 \right]_{\text{dissous}}$ en acide volatil à sa valeur normale par un contrôle cérébral de la concentration en dioxyde de carbone soit : $1,2 \pm 0,1$ mmol.L⁻¹.
- Par un ajustement par les reins de la concentration en acide, fixe à sa valeur normale par un contrôle de la concentration en ion hydrogénocarbonate.

Pour un pH normal (pH = $7,40\pm0,02$), la concentration en ion hydrocarbonate HCO_3^- est égale à 24 ± 3 mmoL.

- 1°) Lorsque le pH descend à 7,0, le sang est-il acide, basique ou neutre ? On donne à 37°C pKe = 13,6.
- 2°) Préciser si la dissolution du dioxyde de carbone CO2 dans l'eau est-il exothermique ou endothermique
- 3°) Calculer le quotient $\frac{[HCO_3^-]}{[CO_2]_{dissours}}$ à partir duquel la mort par le coma se produit (à 37 °C).
- 4°) Donner, d'après le texte, les deux processus permettant d'ajuster le pH du sang.

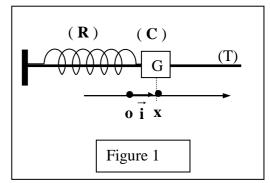
PHYSIQUE (13 points)

Exercice n°1 (8,5 points)

 $oldsymbol{U}$ ne pendule élastique horizontale est constituée :

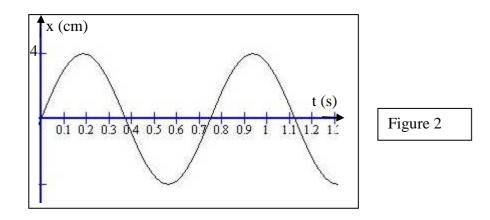
- * d'un ressort (R) de masse négligeable et à spires non jointives et de constante de raideur K.
- * d'un corps (C), de masse m = 400 g qui peut glisser sans frottement sur une tige rigide (T) horizontale sur laquelle est enfilé le ressort (R) voir figure 1.

La position du centre d'inertie G du corps (C) est définie par son abscisse \mathbf{x} dans le repère (O, \vec{i}). L'origine O correspond à la position de G lorsque le corps (C) est en équilibre.



I – Les frottements sont supposées négligeables, on écarte le corps (C) de sa position d'équilibre d'une distance d dans le sens positif des élongations et on l'abandonne à lui même à l'origine du temps sans vitesse initiale.

L'enregistrement mécanique des élongations x en fonction du temps donne la courbe de la figure 2.



1°) a- Préciser la nature des oscillations.

- b-Donner, alors, l'équation différentielle des oscillations en x.
- 2°) Déterminer graphiquement :
 - a- L'amplitude X_m des oscillations.
 - b- La période T_0 des oscillations. Déduire la valeur de la constante de raideur K. On prendra $\pi^2 \approx 10$.
- 3°) a- Donner l'expression de l'énergie mécanique E du système $S = \{(C), (R)\}$ à un instant de date t, en fonction de K, m, x et v, ou v est la vitesse du corps à

l'instant t.

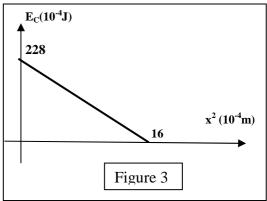
- b- Justifier que le système S est conservatif.
- c- Déduire que l'expression de l'énergie cinétique peut s'écrire

 $E_C = A - \frac{1}{2}Kx^2$, ou A est une constante qu'on précisera sa

signification.

d- Une étude expérimentale à permis de tracer la courbe $E_C = f(x^2)$ de la figure 3.

- * retrouver la valeur de la constante de raideur K.
- * déterminer la valeur de la constante A.



II – Dans la suite le corps (C) est soumis à des forces de frottements de type visqueux (lame + eau)

équivalents à une force $\vec{f} = -h\vec{v}$, avec h est une constante positive.

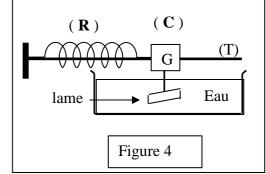
Un dispositif, non représenté, exerce

sur (C) une force excitateur $\vec{F} = F(t)\vec{i}$,

avec
$$F(t) = F_m \sin(2\pi N t + \pi)$$
.

- 1°) Indiquer, en expliquant, le rôle de l'excitateur.
- 2°) Montrer que l'équation différentielle des oscillations forcées faisant intervenir x peut s'écrire :

$$m\frac{d^2x(t)}{dt^2} + h\frac{dx(t)}{dt} + K.x(t) = F(t)$$



- 3°) Pour une valeur de fréquence de l'excitateur N=1 Hz, on donne sur la feuille jointe (figure 6) la construction de Fresnel incomplète relative à l'équation différentielle précédente.
- a- Le vecteur \overrightarrow{OA} représente la fonction K.x(t). Que représente le vecteur \overrightarrow{AB} . Justifier.
- b- Sachant que $F_m = 2$ N compléter à l'échelle, sur la feuille jointe à remettre avec la copie, la construction de Fresnel.
- c- Déterminer graphiquement X_m et déduire la constante h . On donne K = 28,5 N.m⁻¹
- 4°) Pour deux valeurs h_1 et h_2 de h (avec $h_2 < h_1$) et on a tracé expérimentalement dans chaque cas les courbes $X_m = f(N)$ de réponse du résonateur voir figure 5
- a- Quel est l'état de l'oscillateur pour $N = N_a$ et $N = N_b$.
- b- Attribuer en justifiant les valeurs h_1 et h_2 aux courbes (a) et (b).
- c- Sachant que N_r peut s'écrire : $N_r^2 = N_0^2 \frac{h^2}{8\pi^2 m^2}$, avec

 N_0 est la fréquence propre.

- Que représente N_r.
- Tracer l'allure de la courbe $X_m = f(N)$ pour des frottements négligeables ($h \rightarrow 0$)

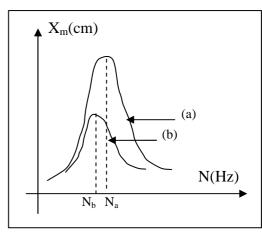


Figure 5

 5°) a – On rappelle que l'expression de la puissance moyenne consommée par un oscillateur électrique analogue est : $P_m = R_T.I^2$. Montrer par une analogie électrique-mécanique que l'expression de la puissance mécanique moyenne dissipée par l'oscillateur mécanique précédent peut s'écrire

$$P_{\rm m} = \frac{h F_{\rm m}^2}{2 [h^2 + (m\omega - \frac{K}{\omega})^2]}$$
 avec : $\omega = 2\pi N$.

- b- Déterminer la pulsation à la résonance de puissance.
- c- Calculer la valeur maximale de cette puissance.

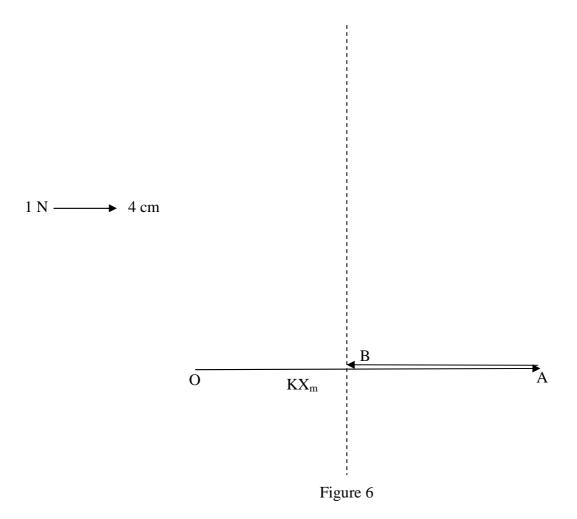
Exercice n°2 (4,5 points)

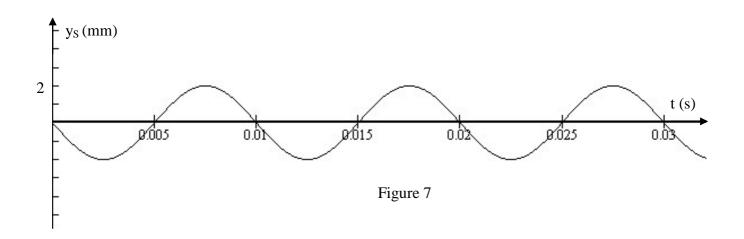
L'extrémité S, d'une corde horizontale homogène tendue de longueur L, est reliée à une lame vibrante produit une onde progressive sinusoïdale et transversale d'amplitude a et de fréquence N le long de la corde. l'extrémité S débute son mouvement à l'instant t=0 s à partir de sa position d'équilibre prise comme origine des élongations y compté positivement vers le haut.

- 1°) a- Faire un schéma de dispositif permettant de produire une onde progressive le long de la corde.
 - b- Eclairée par un stroboscope de fréquence N₁, la corde parait immobile.
 - * Faire un schéma simple de l'aspect de la corde.
 - * Préciser les grandeurs qu'on peut les mesurer à partir de cet aspect.
- 2°) La courbe de la figure 6 du document joint représente le diagramme du mouvement de la source (S).
 - a- Déterminer, graphiquement :
 - * L'amplitude a de mouvement de S.
 - * La période T et déduire la fréquence N du mouvement de S.
 - b- Monter que la phase initiale de l'élongation de la source S est $\varphi_{\rm S}=\pi \ rad$. En déduire la loi horaire $y_{\rm S}(t)$.
- 3°) On considère un point M_1 de la corde d'abscisse $x_1 = 15$ cm, et on donne la célérité de l'onde $v = 20 \text{ m.s}^{-1}$
 - a- Etablir l'équation horaire $y_{M_1}(t)$ du mouvement du point M_1 .
 - b- Tracer (sur la figure 7) le diagramme de mouvement de M_1 .
 - c- Comparer le mouvement de M₁ à celui de S.

Feuille à rendre avec la copie .

Nom :.....; Prénom :.....; N° :.....; Classe :.....





Fiole

jaugée

Correction du devoir de synthèse N° 2 08-09

Chimie

Exercice N°1 (5 points)

1°) a- Etablissons la relation entre C_0 , V_0 , C_1 et V_1 ; en déduire V_0 . A la suite de la dilution le nombre de moles d'acide ne change pas. On peut écrire alors.

$$N_0 = C_0 V_0 = C_1 V_1$$
 d'où $V_0 = \frac{C_1 \cdot V_1}{C_0}$ AN: $V_0 = \frac{10^{-2} \cdot 50}{5 \cdot 10^{-2}} = 10 \text{ mL} (0.5 \text{ pt})$

b-Décrivons le mode opératoire permettant de préparer la solution S₁ On prélève le volume V₀ d'acide à l'aide d'une pipette de 10 mL qu'on introduit dans une fiole jaugée de 100 mL puis on ajoute de l'eau jusqu'au trait de jauge. (0,5 pt)

Déterminons le nombre des ions hydronium dans chacune des solutions. $n_0(H_3O^+) = 10^{-pH0}.V_0 = 10^{-5.05} = 8.91.10^{-6}$ mol. $n_1(H_3O^+) = 10^{-pH1}.V_1 = 5.10^{-5.4} = 1.99.10^{-5}$ mol. (0,25 pt)

$$n_1(H_3O^+) = 10^{-pH1} \cdot V_1 = 5.10^{-5.4} = 1,99.10^{-5} \text{ mol. } (0,25 \text{ pt})$$

■ Complétons le tableau

Solution	S_0	S_1	
C (mol.L ⁻¹)	5.10^{-2}	10^{-2}	
pН	3,05	3,4	
n(H ₃ O ⁺) mol	8,91.10 ⁻⁶ .	19,9.10 ⁻⁶	

Le nombre d'ions hydronium augmente à la suite d'une dilution donc la dissociation de l'acide éthanoïque est limitée et par suite l'acide est faible. (0,25 pt)

$$b-*\frac{C_1}{C_2}=0.2 \ (0.25 \ pt)$$

*
$$pH_{S1} = \frac{1}{2}(pKa - log\frac{C_1}{C_2}) = pH_0 + \frac{1}{2}log5 = 3,39 \approx 3,4 \,(0.5 \text{ pt})$$

c- Ecrivons l'équation de la dissociation de l'acide.

$$CH_3COOH + H_2O \iff CH_3COO^- + H_3O^+$$
 (0,25 pt)

4°) a- Dressons le tableau d'évolution de la réaction de dissociation, dans S₁, de l'acide éthanoïque.

Etat du système	Avancement volumique	CH₃COOI	H + H ₂ O ←	≥ CH ₃ CC	OO - + H ₃ O ⁺
initial	0	Cı	excès		$\left[H_3 O^+ \right]_e$
Final	y f	C ₁ - y _f	excès	y _f	$y_{f} + [H_3O^+]_e$

(0,25 pt)

b- Déterminons les concentrations des espèces chimiques autres que l'eau, présentes dans la solution S₁ qui sont H₃O⁺, OH⁻, CH₃COOH, CH₃COO⁻.

$$\left[H_3O^+ \right]_e \ll \left[H_3O^+ \right]_{acide}$$
 alors on peut écrire $\left[H_3O^+ \right]_{acide} = y_f = C \left[H_3COO^- \right]$

$$[CH_3COOH] = C_1 - [CH_3COO^-] = 10^{-2} - 3.98 \cdot 10^{-4} = 0.96 \cdot 10^{-2} \cdot \text{mol.L}^{-1}$$

$$K_a = \frac{[H_3O^+][CH_3COO^-]}{[CH_3COOH]} = 1,65.10^{-5}$$
 d'où pKa = 4,782 (0,5 pt)

 4°) a- Exprimons le taux d'avancement au_{0f} de la réaction de dissociation de l'acide relatif à la solution S_0

$$\tau_{0f} = \frac{y_{1f}}{C_0} = \frac{10^{-pH0}}{C_0} (0,25 \text{ pt})$$

b-Calculons les taux d'avancement τ_{0f} et τ_{1f} de la réaction de dissociation de l'acide relatifs respectivement aux solutions S_0 et S_1 .

$$\tau_{0f} = 1.78.10^{-2}; \tau_{1f} = 3.98.10^{-2}$$
 (0.25 pt)

c- Déduisons l'effet de la dilution sur la dissociation de l'acide éthanoïque.

 $\tau_{1f} > \tau_{0f}$ l'équilibre est déplacé dans le sens direct. La dissociation de l'acide est donc favorisée. (0,25 pt) d- Interprétons ce résultat en utilisant les lois des équilibres chimiques.

D'après la loi de modération, l'addition de l'eau déplace l'équilibre se déplace dans le sens direct ce qui favorise la dissociation de l'acide éthanoïque. (0,25 pt)

Exercice N°2 (2 points)

1°) Déterminons le caractère acide basique ou neutre du sang.

 $pH_N = \frac{1}{2}pKa = 6.8$ la pH su sang à 37 °C est pH =7 > pH_N alors le sang a un caractère basique. (0,5 pt)

2°) Précisons si la dissolution du dioxyde de carbone CO₂ dans l'eau est-il exothermique ou endothermique.

A la suite de l'abaissement de la température le pKa a augmenté donc la Ka a diminué car l'équilibre est déplacé dans le sens inverse (sens exothermique). Alors la dissociation (sens direct) endothermique. (0,5 pt)

3°) Calculer le quotient $\frac{[HCO_3^-]}{[CO_3]_{**}}$ à partir duquel la mort par le coma se produit

$$\log \frac{\left[\text{HCO}_{3}^{-}\right]}{\left[\text{CO}_{2}\right]_{\text{diss}}} = \text{pH-pKa} = 7_\text{-}6,1 = 1,7 \quad \Leftrightarrow \quad \frac{\left[\text{HCO}_{3}^{-}\right]}{\left[\text{CO}_{2}\right]_{\text{diss}}} = 10^{0.9} = 7,94 \quad \textbf{(0,5 pt)}$$

- 4°) Les deux processus permettant d'ajuster le pH du sang.
 - Ajustement de HCO₃ par les reins.
 - Ajustement de [CO₂] par les poumons.

(0,5 pt)

Physique

Exercice N°1

I - (3.5 points)

1°) a- Précisons la nature des oscillations du pendule.

L'enregistrement mécanique donne une sinusoïde alors les oscillations sont de type sinusoïdale. (0,5 pt) b- Donnons l'équation différentielle des oscillations en x.

$$\frac{d^2x}{dt^2} + \frac{K}{m}x = 0 \Leftrightarrow \frac{d^2x}{dt^2} + \omega^2x = 0 \quad (0.25 \text{ pt})$$

2°) Déterminons graphiquement

a- L'amplitude $X_m = 4$ cm (0,25 pt)

http://www.abderrazekseddik.sitesled.com/

$$4^{\grave{e}me}Sc,M\&T$$

b- La période propre $T_0 = 0.75 \text{ s}$ (0,25 pt) on peut déduire $K = 4\pi^2 \frac{m}{T_0^2} = 28.5 \text{ N.m}^{-1}$. (0,5 pt)

 3°) a- Donner l'expression de l'énergie mécanique E du système $S = \{(C), (R)\}$ à un instant de date t.

$$E = E_c + E_{pe} = \frac{mv^2}{2} + \frac{Kx^2}{2} (0.25 pt)$$

b- Justifier que le système S est conservatif.

 $\frac{dE}{dt} = \frac{dx}{dt} \left(\frac{d^2x}{d^2t} + \omega^2 x \right) = 0 \text{ car } \left(\frac{d^2x}{d^2t} + \omega^2 x \right) = 0 \Leftrightarrow \text{ l'énergie est constante le système est dit conservatif. } (0.25 \text{ pt})$

c- Déduisons que l'expression de l'énergie cinétique peut s'écrire

$$E_C = A - \frac{1}{2}Kx^2,$$

$$E = \frac{mv^2}{2} + \frac{Kx^2}{2} \Leftrightarrow E_C = E - \frac{Kx^2}{2}$$
 (0,25 pt) par identification A = E 1'énergie du système (0,25 pt)

Retrouvons la valeur de K

La courbe représente une fonction affine de la forme $E_C = a.x^2 + b.$ par identification la pente

$$a = -\frac{228}{16} = -\frac{1}{2} K \iff K = 28.5 \text{ K.N}^{-1} \text{ (0.5 pt)}$$

• On déduit aussi $A = E_C(0) = 228.10^{-4} \text{ J } (0,25 \text{ pt})$

II-(5,5 points)

1°) L'excitateur fournit de l'énergie à l'oscillateur pour entretenir son mouvement. (0,5 pt)

2°) Etablissons l'équation différentielle vérifiée par l'élongation x du solide.

On applique la R.F.D au système {C}

$$\sum \vec{F}_{ext} = m\vec{a}$$

Bilan des forces

 \vec{T} , \vec{P} , \vec{R} , \vec{f} , \vec{F} : forces extérieures.

$$\vec{R} + \vec{P} + \vec{f} + \vec{F} + \vec{T} = m\vec{a}$$
 après projection $T + F + f = ma$

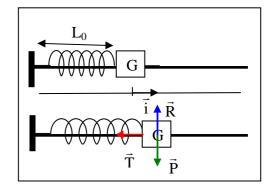
$$\Leftrightarrow$$
 - Kx -hv +F = ma

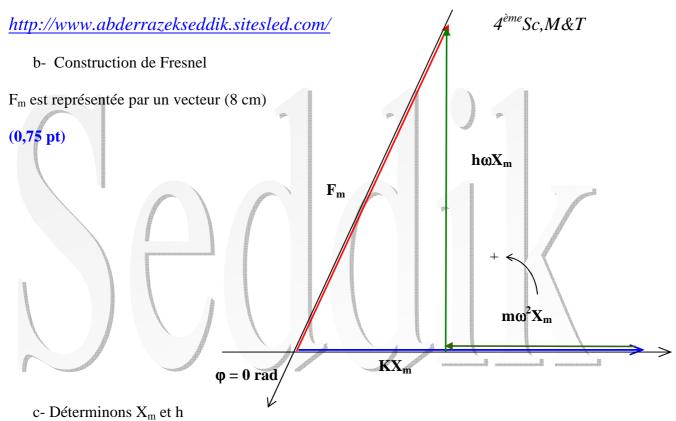
$$m\frac{d^2x}{dt^2} + h\frac{dx}{dt} + Kx = F$$
 Equation différentielle d'un oscillateur mécanique forcé. (0,5 pt)

3°) a- Précisons la désignation du vecteur \overrightarrow{AB}

Le vecteur \overrightarrow{AB} représente la fonction $m \frac{d^2x}{dt^2}$ car \overrightarrow{OA} et \overrightarrow{AB} deux vecteurs opposés puisque

 $m\frac{d^2x}{dt^2}$ et Kx sont deux fonctions en opposition de phase. (0,5 pt)





Le vecteur de valeur KX_m est représenté par 9,1 cm donc $KX_{m=} = \frac{9,1}{4} = 2,275 \, \text{N} \iff X_m = \frac{2,275}{28,5} = 8 \, \text{cm}$

(0.5 pt)

Le vecteur de valeur h\omega X_m est représenté par 6,9 cm donc

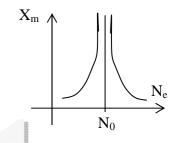
$$h\omega X_m \frac{6.9}{4} = 1,725 \text{ N} \iff h = \frac{1,725}{2\pi.8.10^{-2}} = 3,43 \text{ Kg.s}^{-1}(\textbf{0.5 pt})$$

4°) a- Pour $N=N_a$ et $N=N_b$, X_m prend une valeur une valeur maximale. Donc l'oscillateur est en résonance d'élongation. (0,25 pt)

b- Attribuant à chaque courbe une valeur de h.

 $h_2 < h_1 \iff X_{1m} < X_{2m}$ alors h_1 correspond la courbe (b) et h_2 correspond la courbe (a). **(0,5 pt)**

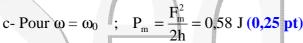
c- La valeur N_r fréquence représente la fréquence de résonance. (0,25 pt) Lorsque h $\longrightarrow 0$; $\lim_{N_r} \lim_{N_0} X_m = \infty$ (0,25 pt)



5°) a- Déterminer l'expression de la puissance.

$$P_{m} = \frac{hV_{m}^{2}}{2} = \frac{hF_{m}^{2}}{2Z_{m}} = Donc \ P_{m} = \frac{hF_{m}^{2}}{2[h^{2} + (m\omega - \frac{K}{\omega})^{2}]}$$
(0,5 pt)

b- La puissance est maximale si $\omega = \omega_0 = \sqrt{\frac{K}{m}} = 8,44 \text{ rad.s}^{-1} (0,25 \text{ pt})$



Exercice N°2 (4 points)

1°) a- Schéma du dispositif (0,25 pt)

- Aspect de la corde (0,25 pt)
- On peut mesurer la longueur d'onde λ de l'onde et son amplitude a. (0,5 pt)

2°) a- Déterminons graphiquement :

- L'amplitude $a = 2.10^{-3} \text{ m}$; (0,25 pt)
- La période temporelle T = 10 ms donc N = $\frac{1}{T}$ = 100 Hz (0,5 pt)
- b- Montrons que la phase initiale de l'élongation de la source S est $\varphi_S = \pi \ rad$. et déduisons la loi horaire $y_S(t)$.

On a $y_S(t)$ est une fonction sinusoïdale de la forme $y_S(t) = a.\sin(\omega t + \phi_s)$.

A t = 2,5.10⁻³ s on a y_S = a.sin(200
$$\pi$$
.2,510⁻³ + ϕ_s) = -a \Leftrightarrow sin($\frac{\pi}{2}$ + ϕ_s) = -1 \Leftrightarrow $\frac{\pi}{2}$ + ϕ_s = $\frac{3\pi}{2}$

D'où $\varphi_S = \pi \text{ rad. } (0.5 \text{ pt})$

3°) a- Etablissons l'équation horaire $y_{M_1}(t)$ du mouvement du point M_1 .

Déterminons le retard θ_1 avec lequel le M_1 reproduit le mouvement de S.

$$\theta_1 = \frac{x_1}{v} = \frac{0.15}{20} = 7.5 \cdot 10^{-3} \text{ s oit } 0.75 \text{ T dont } x_1 = 0.75 \text{ } \lambda$$

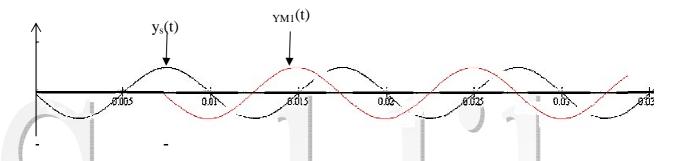
D'après le principe de propagation, $y_M(t) = y_S(t-\theta)$ si $t \ge \theta$

$$\begin{cases} y_{M}(t) = y_{S}(t - \frac{x}{c}) & \text{si} \quad t \ge \theta_{1} \\ y_{M}(t) = 0 & \text{si} \quad t < \theta_{1} \end{cases} \Rightarrow \begin{cases} y_{M}(t) = a \sin \omega ((t - \frac{x_{1}}{c}) + \phi_{S}) & \text{si} \quad t \ge \theta_{1} \\ y_{M}(t) = 0 & \text{si} \quad t < \theta_{1} \end{cases}$$

$$\begin{cases} y_{M}(t) = a \sin(\omega t - \frac{2\pi 0,75\lambda}{\lambda} + \pi) & \text{si } t \ge \theta_{1} \quad \text{d'où} \quad y_{M}(t) = 2.10^{-3} \sin(200\pi t + \frac{\pi}{2}) & \text{si } t \ge 7,5.10^{-3} \text{s} \\ y_{M}(t) = 0 & \text{si } t < \theta_{1} & y_{M}(t) = 0 & \text{si } t < 7,5.10^{-3} \text{s} \end{cases}$$

(0,75 pt)

b- Diagramme de mouvement de M₁



(0,5)pt)

c- Comparer le mouvement de M₁ à celui de S.

Déterminons le déphasage $\Delta \phi = \phi_S$ - $\phi_M = \frac{\pi}{2} rad$. La source S est en quadrature avance de phase sur le point $M_1(\textbf{0,5 pt})$