EXERCICE $\mathbf{0}$ (5pts)

On considère la suite (u_n) définie sur \mathbb{N} par : $\begin{cases} u_0 = 1 \\ u_{n+1} = u_n + 2n + 3 \end{cases}$

- 1. (a) Calculer u_1 et u_2
 - (b) La suite (u_n) est elle arithmétique? Géométrique?
- 2. Etudier la monotonie de la suite (u_n) .
- (a) Montrer que pour tout $n \in \mathbb{N} : u_n > n^2$
 - (b) En déduire $\lim_{n\to+\infty} u_n$
- 4. Montrer que pour tout $n \in \mathbb{N}$: $u_n = (n+1)^2$
- 5. Déterminer la limite (éventuelle) des suites (v_n) ci-dessous:

a)
$$v_n = \frac{1}{n} + \left(\frac{1}{3}\right)^n$$
 b) $v_n = -3 \times 2^n$ c) $v_n = \frac{3^n + 2}{5^n - 1}$

$$b) v_n = -3 \times 2^n$$

$$c) v_n = \frac{3^n + 2}{5^n - 1}$$

EXERCICE $\mathbf{2}$ (5pts)

Partie I

On jette trois dés cubiques équilibrés X, Y et Z dont les faces sont numérotées de 1 à 6. calculer la probabilité d'obtenir:

- A " Exactement un 1"
- B " Au moins un 1"
- C "Trois nombres distincts"
- D "Au moins deux nombres identiques"
- E "Exactement deux nombres identiques"
- F "Une somme de points pair"

Partie II

Soient A et B deux événements indépendants tels que p(A) = 0.2 et p(B) = 0.4Calculer les probabilités ci-dessous.

$$p(A \cap B)$$
, $p(A \cup B)$, $p(A \cap \overline{B})$ et $p(\overline{A} \cap B)$

Partie III

1. Exprimer en fonction de n et sans factorielle les nombres :

$$a = \frac{(n+2)!}{n!}$$

$$b = \frac{C_{n+1}^p}{C_n^p}$$

$$a = \frac{(n+2)!}{n!}$$
 $b = \frac{C_{n+1}^p}{C_n^p}$ et $c = \frac{(2n+2)!}{(2n-1)!}$

2. Résoudre dans N chacunes des équations suivantes:

a)
$$C_n^2 = 36$$

a)
$$C_n^2 = 36$$
 b) $C_n^1 + C_n^2 + C_n^3 = \frac{7}{2}n$

EXERCICE $\mathfrak{3}$ (5pts)

Le tableau suivant donne la dépense, en millions de dinars, des ménages en produits informatiques (matériels, logiciels, réparations) de 1990 à 1999.

, , ,		/								
$Ann\'ee$	1990	1991	1992	1993	1994	1995	1996	1997	1998	1999
Rang X_i de l'année	0	1	2	3	4	5	6	7	8	9
$D\acute{e}pense\ Y_i$	398	451	423	501	673	956	1077	1285	1427	1490

- 1. (a) Calculer la moyenne \overline{X} et l'écart-type σ_X de la variable X.
 - (b) Calculer la moyenne \overline{Y} et l'écart-type σ_Y de la variable Y
- 2. (a) Représenter le nuage de points de la série (X_i, Y_i) dans un repère orthogonal.
 - i. sur l'axe des abscisses: 1cm pour un rang
 - ii. sur l'axe des ordonnées: 1cm pour 200 millions de dinars
 - (b) Comment semble se répartir les points du nuage?
 - (c) Placer le point moyen G.
- 3. G_1 désigne le point moyen des 5 premiers points du nuage et G_2 celui des 5 derniers points.
 - (a) Déterminer les cordonnées G_1 et G_2 .
 - (b) Sur le graphique précédent, tracer la droite (G_1G_2) .
- 4. (a) Déterminer une équation de (G_1G_2) de la forme: Y = aX + b (a et b sont arrondies à 0.1 prés)
 - (b) Calculer la somme des carrés des résidus pour cet ajustement : $S = \sum_{i=0}^{9} [Y_i (aX_i + b)]^2$.
 - (c) Interpréter ce résultat.
- 5. En utilisant cet ajustement, donner une estimation sur les dépenses de l'année 2005.

$\boxed{ \textcolor{red}{\textbf{EXERCICE } \bullet} } _{(5pts)}$

l'espace est muni d'un repère orthonormé $\left(O,\overrightarrow{i},\overrightarrow{j},\overrightarrow{k}\right)$, soient les points A(1,1,1),B(1,2,3) et C(0,0,1).

- 1. (a) Vérifier que les points A, B et C ne sont pas alignés.
 - (b) Placer les points A, B et C.
- 2. (a) Vérifier que \overrightarrow{n} $\begin{pmatrix} 2 \\ -2 \\ 1 \end{pmatrix}$ est un vecteur normal au plan (ABC).
 - (b) En déduire une équation cartésienne de (ABC).
- 3. Vérifier que le point $D(0,2,1) \notin (ABC)$.
- 4. Soit $H(x_0, y_0, z_0)$ le projeté orthogonal de D sur (ABC).
 - (a) Justifier l'existance d'un réel k tel que $\overrightarrow{DH}\begin{pmatrix} 2k \\ -2k \\ k \end{pmatrix}$
 - (b) Déterminer les coordonnées de H.
- 5. Donner une représentation paramétrique de la droite passant par O et perpendiculaire au plan (ABC).