Lycée : Echebbi Tadhaman	Devoir de Synthèse N°1	Prof.: OUERGHI CHOKRI
Année scolaire : 2014/2015		Epreuve : MATHEMATIQUES
Classes: 3eme science 1&2		Durée :2H

Exercice 1: (3 pts)

Calculer les limites suivantes :

$$\lim_{x \to 1} \frac{x^3 - 1}{x^2 - 3x + 2} \qquad \lim_{x \to \frac{-1}{2}} \left(\frac{\sqrt{2x^2 - 3x + 1}}{2x - 1} \right) \qquad \lim_{x \to 3} \left(\frac{\sqrt{2x + 3} - \sqrt{x + 6}}{x - 3} \right)$$

Exercice 2: (7 pts)

Soit
$$f$$
 la fonction définie par :
$$\begin{cases} \sqrt{x^2+3} + ax & si \ x < 1 \\ \frac{x^2-x-1}{x-2} & si \ x \geq 1 \end{cases} ; \text{ avec } a \in \mathbb{R}$$

- 1°) a) Déterminer l'ensemble de définition de f
 - b) Déterminer le réel a pour que f soit continue en 1
- 2°) On prend dans la suite $\,a=-1\,$ Etudier la continuité de f sur son domaine de définition

3°) a) Calculer
$$\lim_{x\to 2^-} f(x)$$
 et $\lim_{x\to 2^+} f(x)$

- b) Interpréter graphiquement le résultat obtenu
- 4°) a) Déterminer $\lim_{x\to-\infty} f(x)$
 - b) Montrer que la droite d'équation $\,y=-2x\,$ est une asymptote oblique aux voisinage de $-\infty$
 - c) Montrer que la droite d'équation y=x+1 est une asymptote oblique aux voisinage de $+\infty$

Exercice 3: (3 pts)

Soient A,B,C, D et E des points du plan orienté tel que

$$\left(\widehat{\overrightarrow{AB}}, \widehat{\overrightarrow{AC}}\right) \equiv \frac{-169\pi}{12} \left[2\pi\right] \qquad ; \qquad \left(\widehat{\overrightarrow{AC}}, \widehat{\overrightarrow{AD}}\right) \equiv \frac{103\pi}{4} \left[2\pi\right] \qquad et \qquad \left(\widehat{\overrightarrow{AB}}, \widehat{\overrightarrow{AE}}\right) \equiv \frac{-10\pi}{3} \left[2\pi\right]$$

- 1°) Donner les mesures principales de chacun des angles orienté $(\overrightarrow{AB}, \overrightarrow{AC})$, $(\overrightarrow{AC}, \overrightarrow{AD})$ et $(\overrightarrow{AB}, \overrightarrow{AE})$
- 2°) Montrer que les points A , E et D sont alignés

Exercice 4: (7 pts)

Soit ABCD un rectangle tel que AB = 4cm et AD = 3cm.

A l'extérieure de ce rectangle , on construit un triangle AEB tel que AE =3cm et $B\hat{A}E=\frac{\pi}{3}$

- 1°) a) Calculer $\overrightarrow{AB} \cdot \overrightarrow{AE}$, $\overrightarrow{BC} \cdot \overrightarrow{BA}$ et $\overrightarrow{CB} \cdot \overrightarrow{CA}$
 - b) Calculer BE
 - c) Calculer \overrightarrow{BE} . \overrightarrow{BA} puis déduire $\cos A\widehat{B}E$
- 2°) Soit G le barycentre des points pondérés (A, 2) et (D, 1)
 - a) Calculer GA et GD
 - b) Déterminer les ensembles suivantes : $\varepsilon = \{ M \in P \ tel \ que \ 2MA^2 + MD^2 = 9 \}$

$$\phi = \left\{ M \in P \ tel \ que \ \overrightarrow{MA}. \overrightarrow{MB} \ = 0 \right\}$$

$$\psi = \left\{ \left. M \right. \in P \; tel \; que \; \; \overrightarrow{AM}. \overrightarrow{AB} \; = 16 \; \right\}$$

- 3°) Le plan est muni du repère orthonormé (D , DI , DG) avec I le milieu de [DC]
 - a) Déterminer les coordonnées des points C, A et B
 - b) Calculer \overrightarrow{IB} . \overrightarrow{IA}
 - c) Soit F(x,y). Déterminer x et y pour que \overrightarrow{AF} et \overrightarrow{AB} soient colinéaires et que \overrightarrow{DF} et \overrightarrow{AI} Soient orthogonaux