Devoir de synthèse n°1 Mathématiques Durée :2h

EXERCICE N°1(4pts)

Répondre par vrai ou faux en justifiant votre réponse.

- 1)Soit A et B deux points distincts du plan l'ensemble des points M du plan tel que \overrightarrow{MA} . $\overrightarrow{AB} = 0$ est le cercle de diamètre [AB].
- 2)Le plan est orienté dans le sens direct .La mesure principale de $\frac{-55\pi}{3}$ est $\frac{\pi}{3}$
- 3)La fonction définie sur IR par $f(x) = \sqrt{2x^2 + 4x + 6}$ est minorée par 2.
- 4)Soit la fonction $f(x) = \frac{\sqrt{x+3}+2}{\sqrt{x+8}-3}$ est définie sur [-3 ; $+\infty$ [\{1}

EXERCICE N°2(7 pts)

Soit f la fonction définie sur IR\{1,2 } par :

$$f(x) = \begin{cases} \frac{x^3 - 1}{x^2 - 3x + 2} & si \ x \in] - \infty; 3[\setminus \{1; 2\} \\ 3x + 8 - \sqrt{x^2 + x + 4} & si \ x \in [3; + \infty[$$

On désigne par (C_f) la courbe de f dans un repère orthonormé $(0; \vec{\imath}; \vec{\jmath})$ du plan.

- 1)a)Calculer $\lim_{x\to 1} f(x)$.
- b)f est-elle prolongeable par continuité en 1 ?Justifier.
- 2)Calculer $\lim_{x\to 2^+} f(x)$ et $\lim_{x\to 2^-} f(x)$.Interpréter graphiquement les résultats.
- 3)Etudier la continuité de f en 3.
- 4)Montrer que f est continue sur]3 ; $+\infty$ [et sur] $-\infty$; 3[\{1; 2}.
- 5)Déterminer $\lim_{x\to -\infty} f(x)$ et $\lim_{x\to +\infty} f(x)$.

EXERCICE N°3(6pts)

Le plan est rapporté à un repère orthonormé direct $(0; \vec{i}; \vec{j})$.

A et B sont les points de coordonnées respectives

$$\left(-1+\sqrt{3};-1-\sqrt{3}\right)$$
 et $\left(\sqrt{3};-\sqrt{3}\right)$ et C est le point de coordonnées polaires $\left[\sqrt{2};-\frac{3\pi}{4}\right]$.

1)a)Déterminer les coordonnées polaires de B et les coordonnées cartésiennes de C.

b)Construire le point B.

2)a)Montrer que le quadrilatère OBAC est un rectangle.

b)Construire le point A.

3)Déterminer $\cos(\overrightarrow{OA}; \overrightarrow{OB})$ et $\sin(\overrightarrow{OA}; \overrightarrow{OB})$. En déduire que $(\overrightarrow{OA}; \overrightarrow{OB}) \equiv \frac{\pi}{6}[2\pi]$.

4)Déduire les coordonnées polaires de A.

EXERCICE N°4(3pts)

Soit f la fonction définie sur IR par f(x)=cos2x-sin2x

1)Montrer que pour tout réel x on a : $f(x) = -\sqrt{2}\sin(2x - \frac{\pi}{4})$.

2) Résoudre dans $[0;\pi]$ l'équation f(x)=0 et l'inéquation $f(x) \ge 1$

3) Résoudre dans IR l'équation $(f(x))^2+4f(x)-5=0$.

Bon travail