REPUBLIQUE TUNISIENNE

SECTION: 36me SCIENCES EXPERIMENTALES

EPREUVE: MATHEMATIQUES DUREE: 3h **COEFFICIENT: 3**

"Il est recommandé de soigner la rédaction et la présentation de la copie"

Exercice 1 (3 pts)

Cocher la seule réponse correcte

- 1) L'espace est rapporté à un repère orthonormé (O, î, ĵ,k). L'équation cartésienne du plan P passant par O et de vecteur normal \vec{K} est :
- a) z = 0
- **b)** x + y = 0

- 2) On lance une pièce de monnaie 5 fois et on note à chaque fois le résultat obtenue. Le nombre des résultats possibles est :
- a) 2⁵

- c) 5!
- 3) Soit (Un) la suite définie pour tout entier naturel n par : $Un = -(\frac{2}{3})^n$
- a) (Un) est croissante; b) (Un) converge vers 0; c) (Un) est divergente.

Exercice 2 (4 pts)

On donne la suite (u_n) définie par : $\begin{cases} U_0 = \frac{1}{2} \\ U_{n+1} = \frac{1}{3}U_n - 1 \end{cases}$

- 1)a) Calculer u_1 et u_2 .
- b) Déduire que la suite U_n n'est ni arithmétique ni géométrique .
- 2) Montrer par récurrence que $-\frac{3}{2} \le U_n \le \frac{1}{2}$ pour tout $n \in \mathbb{N}$.
- 3)a) Montrer que U_n est décroissante.
- b) Déduire que *U*_n est convergente.
- 4) Soit V_n la suite définie par ; $V_n = U_n + \frac{3}{2}$ pour tout $n \in \mathbb{N}$.

- a) Montrer que V_n est une suite géométrique de raison $\frac{1}{3}$.
- b) Calculer V_n en fonction de n puis déduire que : $U_n = 2 \times (\frac{1}{3})^n \frac{3}{2}$.
- c) Calculer $\lim_{n\to+\infty} U_n$.

Exercice 3 (4 pts)

L'espace est rapporté à un repère orthonormé $(0, \vec{\iota}, \vec{j}, \vec{k})$.

On donne les points A(2,0,1), B(-1,2,0) et C(-4,4,m).

- 1) Montrer que A; B et C sont alignés si et seulement si m=-1.
- 2) Pour m=2 montrer que A; B et C déterminent un plan d'équation; 2x+3y-4=0.
- 3) On donne la droite Δ : $\begin{cases} x = 1 + \alpha \\ y = -2 + \frac{3}{2}\alpha ; & \alpha \in \mathbb{R} \\ z = 1 \end{cases}$
- a) montrer que Δ est perpendiculaire au plan (ABC)
- b)Soit $\{E\} = \Delta \cap (ABC)$ déterminer les coordonnées de E.
- 4)a) Vérifier que F(5,4,1) est un point de Δ .
 - b) Donner une représentation paramétrique de la droite Δ' passant par F

et de vecteur directeur
$$\vec{v} \begin{pmatrix} -3 \\ 2 \\ 0 \end{pmatrix}$$
.

c)Montrer que $\Delta \perp \Delta'$.

Exercice 4 (5 pts)

Une urne contient 4 boules blanches et 5 boules rouges.

- I. On tire simultanément 3 boules de l'urne.
 - 1. Déterminer le nombre de tirages possibles.

- 2. Combien y a-t-il de tirages comportant 2 boules blanches?
- 3. Combien y a-t-il de tirages comportant des boules de même couleur.
- II. On tire successivement et sans remise trois boules de l'urne.
 - 1. Déterminer le nombre de tirages possibles.
 - 2. Combien y a-t-il de tirages comportant une seule boule rouge .
- III. On met 4 boules numérotées (-1); (-1); (-1); (0) dans un premier sac et 5 boules numérotées (1); (1); (2); (2); (2) dans un deuxième sac .On tire une boule de chacun des deux sac; on note les deux numéros obtenus et on remet chaque boule dans le sac correspondant.

Déterminer le cardinal des ensembles suivants :

- A "La somme des numéros obtenus est inférieure ou égale à 3".
- B "Obtenir une somme égale à 1"
- C "Obtenir une somme supérieure à 3".

Exercice 5 (4 pts)

Soit f la fonction définie sur IR par $f(x) = \sqrt{x^2 + 1}$ et C_f

sa courbe représentative orthogonale (O, \vec{i}, \vec{j})

- 1. a) Vérifier que f est dérivable sur IR ,et que $f'(x) = \frac{x}{\sqrt{x^2 + 1}}$
 - b) Dresser le tableau de variation de f
- 2. a) Calculer $\lim_{x \to +\infty} f(x) x$ et $\lim_{x \to -\infty} f(x) + x$
 - b) En déduire que C_f admet deux asymptotes D et D' dont on déterminera les équations
 - c) Préciser la position relative de C_f par rapport à D et à D'
 - 3. Tracer D , D' et C_f dans un repère orthonormé $(0, \vec{l}, \vec{j},)$.