Lycée Remada Tataouine

Année Scolaire : 2017 - 2018

Classes: $1^{\text{ères}} S_3$ et S_4 **DATE:** MARS 2018 Durée: 45 minutes

Devoir de contrôle N°3

Mathématiques

(5 points) Exercice 1

Pour chacune des questions suivantes une seule réponse est exacte, cocher la bonne case.

Questions	Réponses	
1. Pour toute application linéaire f non nulle on a :	$\square f(1) = 0$	
	$\square f(0) = 1$	
	$\square f(0) = 0$	
2. L'ensemble des solutions dans $\mathbb R$ de l'équation :	$\square \mathbf{S}_{\mathbb{R}} = \{-3; 3\}$	
$-3(x-3)x^2 = 0$ est		
	$\square \mathbf{S}_{\mathbb{R}} = \{0; 3\}$	
3. Si f est une application linéaire vérifiant :	$\square f(x) = 3x$	
f(-5) = 15 alors, pour tout réel x , on a :	$ \Box f(x) = -3x $	
	$\Box f(x) = -5x$	
4. Dans R, l'équation équivalente à	$\square \ 2x - 3 = 0$	
$\frac{4}{3} \left(\frac{9x - 6}{5} \right) = 0 \text{ est}$		
5. Le quadrilatère $ABDC$ est un parallélogramme		
équivaut à	$\square \overrightarrow{AC} = \overrightarrow{AB} + \overrightarrow{AD}$	
	$\square \overrightarrow{BC} = \overrightarrow{CA} + \overrightarrow{CD}$	

Exercice 2 (6 points)

Soit l'application f définie par : f(x) = 5x

- 1. Donner la nature de f puis préciser son coefficient.
- 2. a/Recopier puis compléter, en justifiant les calculs, le tableau de valeurs suivants :

;	x	-2	-1	0	1
f	(x)				

- b/ Tracer Δ la représentation graphique de f dans un repère (O, I, J).
- c/ Le point $M(10^2; 500)$ appartient-il à Δ ? Justifier votre choix.

Exercice 3 (6 points)

- 1. Construire un triangle ABC isocèle en A puis placer le point I milieu de [BC].
- 2. Construire le point D image de B par la translation de vecteur \overrightarrow{AC} puis montrer que ABDC est un losange.
- 3. Placer le point F tel que : $\overrightarrow{AB} = \overrightarrow{FC}$ puis montrer que C est le milieu de [FD].

Exercice 4 (3 points)

- 1. Dresser sur \mathbb{R} un tableau de signe pour l'expression : $x^2(2x+6)$
- 2. En déduire les solutions dans \mathbb{R} de l'inéquation : $x^2(2x+6) \leq 0$